CCCP

MUHUCTEPCTBO TPAHCHOPTHOLO CTPOUTEABCTBA FAABTPAHCHPOEKT FINI COЮЗДОРПРОЕКТ

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.503-27

Автодорожные рамно-неразрезные мосты и путепроводы с пролетами:
12+15*n+12; 15+18*n+15; 15+24*n+15;
НАГРУЗКА Н-30 и НК-80

в інналава и винадженату адот 17 годії атрам в пот 17 годії адот 17 годії в пот 17 годії в пот

BANK 1-1 BANK 1-2 BANK 1-3 BAN		1 11		1 11		. Ļ	4
Расостамый лист Опоры Распест на прочность 4 Висстания лист Опоры Усилия по операт Фридамента 5 Восстаний лист Опоры Усилия на подорожного отросня 6 Восстаний лист Опоры Усилия на подорожного отросня 6 Восстаний лист Опоры Такиния высках Образа В подорожного отросня от отрожного стания выскам подорожного отросня 6 Опоры Такиния выскам Баста Стания В Стания 15 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -		1	•	T	-	IN AUCTOB	
BANDOCTHIMM MAT DESCRIPT SOME SOME POPULAMENTA BANDOCHMAN MATCH SCHARS I SARRA RODOCHMOST OPPOLISHE SARRA S-6 CICAR 17:15-11-15 APANDOCHMAN SCHARS SARRA S-6 CICAR 17:15-11-15 APANDOCHMAN SCHARS SCH	,	1 1	ВЛОК СТСИКИ БС-В-С СХСМА 15-18 «П+15 АРМИ РОВАНИС	26		"	
Васетный акст Усмовая в влежа происиют стросния 6 Барк стемии деней (день) 6 Барк стемии деней (день) 6 Варк стемии день день день день день день день день		1 1	The state of the s	_	•	"	
ВОВИЕ СТЕМЕНИЙ ЛИСТ В РОВИТ СССЕМИ 15-10-1-1-15 В РОВИНО СВЕМИ 15-10-1-15 В РОВИНО ИЗВЕТИ В РОВИНО СВЕМИ 15-10-1-15 В РОВИТО СВЕМИ 15-10-1-15 В РОВИНО СВЕМИ 15-10-1-15 В РОВИНО СВЕМИ 15-10-1-15 В РО		1 1	Армирование	27	· · ·	1 1	
Вадопорные объемов распет соссиий явит и чалогорого частах Торонам от отронати при опорах стойках Торонам от отронам от от отронам от от отронам от от от от от от от отронам от		0				1 1	
ОПОРЫ ТАБРИЦИ ОВЪЕМОВ ЭДЕОТ ОБДИКАТ ТАВЛИКА ДОСКОВА МАТЕРИАЛОВ ПО ОБДИКИ ТАВЛИКА ДОСКОВА МАТЕРИАЛОВ ПО ОБДИКИ ТАВЛИКА ДОСКОВА 15-12-1-1-15-1 ОБДИКИ ТАВЛИКА ДОСКОВА 15-12-1-1-15-1 ОБДИКИ ТАВЛИКА ДОСКОВА 15-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	РАСЧЕТНЫЙ ЛИСТ РАСЧЕТ СЕЧЕНИЙ БАЛОК ПРОГИБЫ БАЛОК УСИЛИЯ И РАСЧЕТ СЕЧЕНИЙ ПЛИТ И НАДОПОРНОГО УЧАСТКА.	7		28	MOHORHTHEE VACTO BAROK CXCMA 15-18-11-15 ADMUDOBAHUC	49	١
ОБЩИН ВНД ОООРЫЖСНИЯ СКЕМА 15-11-1-15 ОБЩИИ ВНД ОООРЫЖСНИЯ СКЕМА 15-11-1-1-15 ОБЩИИ ВНД ОООРЫЖСНИЯ СКЕМА 15-11-1-1-15 ОБЩИИ ВНД ОООРЫЖСНИЯ СКЕМА 15-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Опоры Таблицы объемов работ	8	надопорные участки при опорах-стойках.			50	١
Общий выд соорримсния Сесма 15-18-п+15. Общий выд соорримсний выд сесма Обрыш выд соорримсния Сесма 15-18-п+15. Общий выд сесма 15-18-п+15. Обрыш быды Сесма 15-18-п+15. Обрыш быды просожей части марки В-5. Сеорма (ессма 15-18-п+15. Обрыш быды просожей части марки В-5. Обрыш быды принаменний выд сесма Сеорма пинти просожей части марки В-5. Сесма 15-18-п+15. Обрыш быды принаменний выд сесма Сесма 15-18-п+15. Обрыш быды бы	ОП ВОЛАНОЗНА АДОХОДА МАТЕРИАЛОВ ПО МИНТЭЛОВО	9		29	АМЭХЭ ВАНЖАТНОМ	51	
Общий вид соорыжения Скема 15-18-п +15. Общий вид соорыжения Скема 15-18-п +15. Общий вид соорыжения Скема 15-18-п +15. Общий вид соорыжения Скема 15-21-п +15. Сточные опоры Скема 15-21-п +15 бырие виды. Стойки 6-1-6 Скема 15-21-п +15 бырие виды. Опоры -6-16 ки	-ОДП ОП ВОПАНДЭТАМ ДДОХЭАД АРИНДАТ RAHAOBD МЕТЭАР МИНДОПО И МАПИДЭП,МАДАИТОДТ,ИТЭАР НЭЖЕЭ	10				57	
Общий вид сооружения Слема 15 + 15 + n + 15. Общий вид сооружения. Слема 12 + 15 + n + 12. Общий вид сооружения. Слема 12 + 15 + n + 12. Общий вид сооружения. Слема 15 + 21 + n + 15. Общий вид сооружения. Слема 15 + 21 + n + 15. Общий вид сооружения. Слема 15 + 21 + n + 15. Общий вид сооружения. Слема 15 + 21 + n + 15. Общий вид сооружения. Слема 15 + 21 + n + 15. Общий вид сооружения. Слема 15 + 18 + n + 15. Общий вид сооружения. Слема 12 + 15 + n + 12. Общий вид сооружения. Олема 15 + 18 + n + 15. Общий вид сооружения. Олема 12 + 15 + n + 12. Общий вид сооружения виды. Видопорный участок Слема 15 + 18 + n + 15. Общий вид сооружения виды. Видопорный участок Слема 15 + 18 + n + 15. Общий вид сооружения видом проводите части марки П-4 и В-5. Общий вид сооружения видом просужей части марки П-4 и В-5. Общий видопорный участок Слема 15 + 18 + n + 15. Общий видопорный участок Слема 15 + 18 + n + 15. Опоры - стенки Слема 15 + 21 + n + 12. Опоры - стенки Слема 15 + 21 + n + 15. Общий видопорный участок Слема 12 + 15 + n + 12 Падопорный участок Слема 12 + 15 + n + 12	Общии вид сооружения Схема 15+21 × n + 15.	11	табарит т Ni+15*2 армирование	50	СБОРНЫС ПЛИТИ ПРИСТИКИ ЧАСТИ СХЕМА 15+184 МОНТАЖНАЯ СКЕМА	53	
СТОСИНИЕ ОПОРЫ. СХЕМА 15-21-П-15 ОБЩИЕ ВИДЫ. СТОСИНИЕ ОПОРЫ СХЕМА 15-21-П-15 ОБЩИЕ ВИДЫ. ОБОЖИЕ ВИДЫ ПАДОПОРЫНИ ЧИЛОТОК СХЕМА 15-16-П-15. ОБОЖИЕ ВИДЫ ПАДОПОРЫНИ ЧИЛОТОК СХЕМА 15-16-П-15. ОПОРЫ—СТЕПКИ ССЕМА 15-21-П-15. ОБЩИЕ ВИДЫ. ОПОРЫ—СТЕПКИ СХЕМА 15-16-П-15. ОБЩИЕ ВИДЫ. ОПОРЫ—СТЕПКИ БС-1-С СХЕМА 15-16-П-15. ОБЩИЕ ВИДЫ. ОПОРЫ—И ВИДОПОРНЫЙ ЧИЛСТОК СХЕМА 12-15-П-12 ОПОРЫ—СТЕПКИ БС-1-С СХЕМА 15-16-П-15. ОБЩИЕ ВИДЫ. ОПОРЫМ ЧИЛСТОК СХЕМА 15-16-П-15. ОБЩИЕ ВИДЫ. ОПОРЫ—О СТЕПКИ ВС-1-С СХЕМА 15-16-П-15. ОБЩИЕ ВИДЫ. ОПОРЫМ ЧИЛСТОК СХЕМА 15-16-П-15. ОБЩИЕ ВИДЬ. ОПОРЫМ ЧИЛСТОК СХЕМ	Общий вид сооружения Схема 15+18×n+15.	12		31	СБОРНАЯ ПЛИТА ПРОСЪЖЕЙ ЧАСТИ МАРКИ П-5. Схема 15+18-кп+15 Армирование	54	
Спочные опоры Слема 15+18-п-15 и 12+15-п-12 Спочные опоры Слема 15+18-п-15 и 12+15-п-12 Спочки с-1-с слема 15+18-п-15 слема 15+18-п-15 Спочки с-1-с слема 15+21-п-15 армирование Падопорный участок слема 15+18-п-15 Падопорный уча	Общий вид сооружения. Схема 12 + 15 × n + 12.	13		30	СБОРНЫЕ ПЛИТЫ ПРОСЪЖЕЙ ЧАСТИ СХЕМА 12+15*П +12. МОНТАЖНАЯ СХЕМА	2.5	
Опоры – стечки белье бема 15+18×п+12 и 12+15×п +12 и 15+18×п+15 и 12+15×п +12 порым и часток стема 15+21×п+15 Армирование Опоры – стечки схема 15+21×п+15 Общие виды Опоры – стечки белье бема 15+21×п+15 Общие виды Опоры – стечки	Стоечные опоры. Схема 15+21×n+15 Общие виды.	14	ТАБАРИТ 1-6,5+10+2 АРМИРОВАНИО.	32	Свориме плиты проезжей части марки П-4 и П-5		١
ТОПО В СТЕНКИ СХЕМА 12+15×п.+15. В ВЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ СХЕМА 15+18×п.+15. ОБЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ СХЕМА 12+15×п.+15. ОБЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ СХЕМА 12+15×п.+15. ОБЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ СХЕМА 12+15×п.+15. ОБЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+12. ОБЩИЕ ВИДЫ. ОПОРЫ — СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБЩИЕ ВИДЫ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБЩИЕ ВИДЫ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+15×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+15. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+12. ОБМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+15. ОВМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+15. ОВМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+15. ОВМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИ СХЕМА 15+18×п.+15. ОВМИРОВАНИЕ. ВЛОК СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ ЧАСТИК ПРИВИВНИЕМ. ВОВЕКТ СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ НЕ СТЕНТУВНЕНИЯ. ВОВЕКТ СТЕНКИ ВСТЕК КОМЕТРУКЦИЯ ПРОСЭЖЕЙ НЕ СТЕНТУВЕТ НЕ 12 ВАВОПОТНИКИ В ГЕНТУВНИЕ КОНСТРУКЦИЯ. ВОВЕКТ СТЕНКИ ВСТЕКТИИ В ПРОСЕЖЕЙ НЕ ВОВЕКТИИ В ПРОСЕМЕНИЯ. ВОВЕКТ СТЕНКИ В СТЕНТИВНЕНИИ В ПОВЕКТИИ В ПРОСЕМЕНИИ В ПОВЕКТИИ В ПОВЕ	Стоечные опоры Схемы 15+18×п+15 и 12+15×п+12 Общне виды	15	***************************************	33		'	
17	Стойки С-1-в Схема 15+21×n+15 Армирование	16		34	Коиструкции проезжей части и блока барьерного ограждения Сусма 15 + 21 + 11 + 15 ,	58	
Опоры - стенки схема 15+18 × п +15. Общие виды. Опоры - стенки схема 15+18 × п +15. Общие виды. Опоры - стенки бс-2-с схема 12+15 × п +12. Общие виды. Блок стенки бс-2-с схема 15+21 × п +15. Армирование. Блок стенки бс-2-с схема 15+21 × п +15. Армирование. Блок стенки бс-3-с, бс-9-с. Схема 12+15 × п +12 и 15+21 × п +15. Армирование. Блок стенки бс-3-с и бс-6-с и вс-10-с. Схемы 12+15 × п +12 и 15+21 × п +15. Армирование. Блок стенки бс-5-с схема 15+21 × п +15. Армирование. Блок стенки бс-3-с и бс-6-с и вс-10-с. Схемы 12+15 × п +12 и 15+21 × п +15. Армирование. Блок стенки бс-5-с схема 15+21 × п +15. Армирование. Блок стенки бс-5-с схема 15+21 × п +15. Армирование. Блок стенки бс-5-с схема 15+21 × п +15. Армирование. Блок стенки бс-5-с схема 15+21 × п +15. Армирование. Блок отенки бс-3-с отенки		17			Конструкция проезжей части Схема iS+18*n.+15.	59	
Опоры — стенки Схема 15 + 18 × п + 15. Общие виды. Опоры — стенки Схема 12 + 15 × п + 12. Общие виды. Блок стенки БС-1-в Схема 15 + 21 × п + 15. Армирование. Влок стенки БС-2-в Схема 15 + 21 × п + 15. Армирование. Влок стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влок стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влока стенки БС-3-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 15 + 18 × п + 15. Армирование. Влока стенки БС-5-в. Скемы 12 + 15 × п + 15	Опоры – стенки. Схема. 15+21×п.+15. Общие виды	18	TABADUT T-85+10+2 ADMHDOBANHE	35	Конструкция плосъжей части Схена 12+15×n+12	60	
Опоры - стенки. Схема 12 +15 × п +12. Общие виды. 20 Пабарит Г-10 +1.5 × 2. Армирование. 56 Деформационный шв ; й) +1.5 × 2. Констрикция 63 Блок стенки БС-1-в Схема 15 + 21 × п +15. Армирование. 21 Надопорный ччасток при опорах - стенках армирование. 38 Монтаж пролетных строений 65 Блоки стенки БС-3-в, БС-9-в. Схема 15 + 21 × п +15. Армирование. Балка Б-1 Схема 15 + 21 × п +15. Армирование. 40 Монтаж пролетных строений 65 Блоки стенки БС-3-г, БС-9-в. Схемы 12 + 15 × п +12 и 15 + 21 × п +15. Армирование. 56 Надопорный ччасток при опорах - стенках армирование. 40 Монтаж пролетных строений 65 Блоки стенки БС-3-г, БС-9-в. Схемы 12 + 15 × п +12 и 15 + 21 × п +15. Армирование. 57 Надопорный ччасток при опорах - стенках армирование. 40 Комы стенки при косом пересечения. 65 Блоки стенки БС-3-г, БС-9-в. Схемы 12 + 15 × п +12 и 15 + 21 × п +15. Армирование. 58 Монтаж пролетных строений 66 Блоки стенки БС-3-г, БС-9-в. Схемы 12 + 15 × п +12 и 15 + 21 × п +15. Армирование. 40 41 42 Блоки стенки БС-3-г, БС-9-в. Схемы 12 + 15 × п +12 и 15 × п +12 и 15 × п +15. Армирование. 58 Монтаж пролемы стеки монтажна при косом пересечения. 68 Блок стенки БС-3-г, БС-9-в. Схемы 12 +	Onodia - cteukh Cxema 15+18 ×n+15. Denne bhain	19	Иадопориый ччасток. Схема 12+15×п+12		ДСФОРМАЦИОЧНЫЙ ЫОВ Г-85+10×2 КОНСТРУКЦИЯ	61	
БЛОК СТЕНКИ БС-1-в Схема 15+21×п+15. Армирование. 21 НАДОПОРИВИ ЧИАСТОК при опорах-стенках Армирование. 22 НАДОПОРИВИ ЧИАСТОК при опорах-стенках Армирование. 23 БЛОКИ СТЕНКИ БС-3-в, БС-9-в. Схема 12+15×п+12 и 15+21×п+15 Армирование. 24 БЛОКИ СТЕНКИ БС-3-в, БС-9-в. Схема 12+15×п+12 и 15+21×п+15. Армирование. 25 БЛОКИ СТЕНКИ БС-4-в и БС-10-в. Схема 12+15×п+12 и 15+21×п+15. Армирование. 26 БЛОКИ СТЕНКИ БС-4-в и БС-10-в. Схема 12+15×п+12 и 15+21×п+15 Армирование. 27 БЛОКИ СТЕНКИ БС-4-в и БС-10-в. Схема 12+15×п+12 и 15+21×п+15 Армирование. 28 БЛОКА Б-1 Схема 15+21×п+15 Армирование. 29 БЛОКА Б-2 Схема 15+21×п+15 Армирование. 20 БЛОКИ Б-3 и Б-4 Схема 15+18×п+15 Опарубочные чертежи. 21 БЛОКА Б-3 СХЕМА 15+18×п+15 Опарубочные чертежи. 22 БЛОКА Б-4 Схема 15+18×п+15 Опарубочные чертежи. 23 БЛОКА Б-4 Схема 15+18×п+15 Опарубочные чертежи. 24 БЛОКА Б-4 Схема 15+18×п+15 Армирование. 25 БЛОКА Б-4 Схема 15+18×п+15 Армирование. 26 БЛОКА Б-6 Схема 15+18×п+15 Опарубочные чертежи. 27 БЛОКА Б-6 Схема 15+18×п+15 Опарубочные чертежи. 28 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 29 БЛОКА Б-1 Схема 15+18×п+15 Опарубочные чертежи. 40 БЛОКИ Б-2 Схема 15+18×п+15 Опарубочные чертежи. 41 БЛОКА Б-6 Схема 15+18×п+15 Опарубочные чертежи. 42 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 43 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 44 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 45 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 46 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 47 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 48 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 49 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 40 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 40 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 41 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 42 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 43 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 44 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 45 БЛОКА Б-7 Схема 15+18×п+15 Опарубочные чертежи. 46 БЛОКА Б-7 С	Onche ground Cypus 10 15 p 40 Orden succession			36	ДСФОРМАЦИОННЫЙ ШОВ (1) +15 ×2 КОНСГРИКЦИЯ	62	
БЛОК СІСИКИ БС-2-В Схема 15+21 кп+15. Армирование 22 НАДОПОРИМИ ЧИСТОК ПРИ ОПОРАХ-СТЕНКАХ АРМИРОВАНИЕ 38 БЯОКИ СТЕНКИ БС-3-В, БС-9-В. Схема 12+15 кп+12 и 15+21 кп+15 БАЛКА Б-1 СХЕМА 15+21 кп+15 АРМИРОВАНИЕ 40 БЯОКИ СТЕНКИ БС-4-В и БС-10-В. Схемы 12+15 кп+12 и 15+21 кп+15 БАЛКА Б-2 СХЕМА 15+18 кп+15 АРМИРОВАНИЕ 41 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 24 БАЛКА Б-3 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 25 БАЛКА Б-4 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 25 БАЛКА Б-4 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 25 БАЛКА Б-4 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 25 БАЛКА Б-4 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 25 БАЛКА Б-4 СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 ПРИМЕРЫ АРМИРОВАНИЕ 45 БЯОК СТЕНКИ БС-5-В. СХЕМА 15+18 кп+15. АРМИРОВАНИЕ 45 ПРИМЕР ВАЛЬКА БОДИНЬЯ ВАЛЬКА ВАЛЬК		20	HAAONODHUM SYACTOK CXCMA 12+15×11+12 Fabadut F-11+15×2, Admindobanie.	37		63	
блок стенки БС-2-в Схема 15 + 21 × п + 15. Армирование 22 Балки Б-1 и Б-2 Схема 15 + 21 × п + 15. Армирование 39 Блоки стенки БС-3-в, БС-9-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. 539 40 Блоки стенки БС-4-в и БС-10-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. 539 40 Блоки стенки БС-3-е. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. 539 40 Блоки стенки БС-4-в и БС-10-в. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. 539 40 Блоки Стенки БС-3-е. Схемы 12 + 15 × п + 12 и 15 + 21 × п + 15. Армирование. 530 40 Блоки Б-3 и Б-4 Схемы 15 + 18 × п + 15. Армирование. 41 42 Блоки Б-5 - в. Схемы 15 + 18 × п + 15. Армирование. 43 44 Блоки Б-5 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Б-6 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Б-6 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Б-6 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Б-6 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Стенки Б-7 - в. Схемы 15 + 18 × п + 15. Армирование. 45 45 Блоки Б-1 и в. Схемы 15 + 18 × п + 15. Армирование. 45<	Блок стенки БС-1-в Схема 15+21×л.+15. Армирование.	21	НАДОПОВИНИ ВЧАСТОК ПРИ ОПОВАХ-СТЕНКАХ АВМИВОВАНИ С.	38		64	
БЛОКИ СТСИКИ БС-5-Е. СХСМЫ 12+15×П-12 И 15+21×П-15 АВМИРОВАНИЕ. БЛОКИ СТСИКИ БС-5-Е. СХСМЫ 12+15×П-12 И 15+21×П-15. АРМИРОВАНИЕ. БЛОКИ СТСИКИ БС-5-Е. СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКИ СТСИКИ БС-5-Е. СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-3 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-4 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-5 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-6 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-6 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-7 СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-6 СХСМА 15+18×П-15. АРМИРОВАНИЕ. ТОРИМСТИКИ ВСС-5-Е. СХСМА 15+18×П-15. АРМИРОВАНИЕ. БЛОКА Б-6 СХСМА 15+18×П-15. АРМИРОВАНИЕ. ТОРИМСТИКИ БС-5-Е. СХСМА 15+18×П-15. АРМИРОВАНИЕ. ТОРИМСТИКИ ВСС-Б-СОСМА 15+18×П-15. АРМИРОВАНИЕ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИКИ ВОТОВНИЕМ ВОТОВНИЕМ ВОТОВНИЕМ. ТОРИМСТИ	блок сіснки БС-2-в Схема 15 +21 ×n+15. Армированне	22		39		1 - 1	
15+21 × 12 - 15 АДМИРОВАНИЕ. БАЛКИ Б-3 И Б-4 Схема 15+21 × 1 + 15 АРМИРОВАНИЕ БАЛКИ Б-3 И Б-4 Схема 15+18 × 11+15 ОПАЛУВОЧНЫЕ ЧЕРТЕЖИ. БАЛКА Б-5 СХЕМА 15+18 × 11+15 АРМИРОВАНИЕ БАЛКА Б-5 СХЕМА 15+18 × 11+15 АРМИРОВАНИЕ БАЛКА Б-6 СХЕМА 15+18 × 11+15 АРМИРОВАНИЕ БАЛКА Б-6 СХЕМА 15+18 × 11+15 АРМИРОВАНИЕ БАЛКА Б-6 СХЕМА 15+18 × 11+15 АРМИРОВАНИЕ ТОРИМЕР АРМИРОВАНИЯ БАЛОК ПОИ КОСОМ ПЕРЕСЕЧЕНИИ МОНТАЖИЛЯ СХЕМА ИКЛАДКИ ПЛИТ ПРИ КОСОМ ПЕРЕСЕЧЕНИИ ТОРИМЕР АРМИРОВАНИЯ ТОРИМЕР АРМИРОВАНИЯ СХЕМА ИКЛАДКИ ПЛИТ ПРИ КОСОМ ПЕРЕСЕЧЕНИИ ТОРИМЕР АРМИРОВАНИЯ ТОРИМЕР АРМИРОВАНИЯ СХЕМА ИКЛАДКИ ПЛИТ ПРИ КОСОМ ПЕРЕСЕЧЕНИИ ТОРИМЕР АРМИРОВАНИЯ ТОРИМ	БЛОКИ СТСИКИ БС-3-Е, БС-9-Е. СХСМЫ 12+15×П-12 И			40			
БАЛКИ Б-3 и Б-4 Схема 15+18 к п +15. Армирование. БАЛКА Б-3 Схема 15+18 к п +15. Армирование. БАЛКА Б-3 Схема 15+18 к п +15. Армирование. БАЛКА Б-3 Схема 15+18 к п +15. Армирование. БАЛКА Б-4 Схема 15+18 к п +15. Армирование. БАЛКА Б-4 Схема 15+18 к п +15. Армирование. БАЛКА Б-4 Схема 15+18 к п +15. Армирование. Тримеры армирования сборных пянт, примыкающих к опорам, при косых пърессчениях.		23	BARKA B-2 CXCMA 15+21 × N+15 APMUPOBAUUF	41		1 - 1	
15+21 × п + 15. Аркінрование. 24 Балка Б-5 Схема 15 + 18 × п + 15. Армінрование. 25 Балка Б-4 Схема 15 + 18 × п + 15. Армінрование. 26 Балка Б-4 Схема 15 + 18 × п + 15. Армінрование. 27 Балка Б-4 Схема 15 + 18 × п + 15. Армінрование. 28 Балка Б-4 Схема 15 + 18 × п + 15. Армінрование. 29 Балка Б-4 Схема 15 + 18 × п + 15. Армінрование. 20 Копорам, при косых перессчениях.	Влики стенки БС-4-С и БС-10-С. Схемы 12+15×п+12 и	1 1	Балки Б-3 и Б-4 Схема 15+18×11+15 Опалубочные чертежн.	42		1 1	
к опорам, при косых перессчениях 70	15+21 × A + 15. ADMHDOBANHE.	24		43	Commission and Commission (Section 1997) and and inches and	"	
I I Exema betonupobaning пролетного строения 71 1	Бярк стенки БС-5'-8. Съсма 15+18 × п. +15. Армирование.	25	Banka B-4 Grema 15 + 18 xn + 15. Apmupobahue	44	к опорам, при косых пересечениях	1 1	
		1 1		1 1	Н СХЕМА БЕТОНИРОВАНИЯ ПРОЛСТНОГО СТРОЕНИЯ	71	

			1
111	РАМНО - НЕРАЗРЕЗНЫЕ МОСТЫ И ПУТЕПРОВОЛЫ.	856	
197	Перечень листое проекта.	1 HOT	

Пояснение.

Рабочие чертежи автодорожных мостов и питепроводов Рамно – неразрезной системы составаены в соответствии с техническим проектом этих соорижений, богласованным минтраньстроем СССР 19 ноября 1974 г. N. а. - 1548. Рабочие чертежи составаены для СХСМ споряжений 15 + 21 × \times Π + 15; 15 + 18 \times Ω + 15; 12 + 15 \times Ω + 12

n - KOAHUCCIAO CPCAHUX RIPOACTOR OT 100 40 34

Ы Технические нормативы

Просктирование конструкций произведено по техническим условиям СИ 365 - 67, СИ 200 - 62 и ВСИ 155 - 69 Dacuethus нагрузки И-30 и ИК-80, толпа на тротуарах 400 Ke/m^2

& 2. MATCPHANU

ВСЕ КОНТТОЧКЦИМ ЗАПРОЕКТИРОВАНЫ НЗ ГИАРОТЕХНИЧЕСКОГО БЕТОНА МАРКИ 300, С МАРКОЙ ПО МОРИЗОСТОЙКОСТИ МРЗ 300 ПО ГОСТ 4795-68 МАРКА БЕТОНА ПО МОРОЗОСТОЙКОСТИ МОЖЕТ БЫТЬ УМЕНЬШЕНА ДО МРЗ 200 АЛЯ РАЙОНОВ С ТЕМПЕРАТУРОЙ ИЛИБОЛЕЕ ХОЛДОНОГО МЕСЯЦА ВЫШЕ - 15°C

ИЗГОТОВЛЕНИЕ БЕТОНА УКАЗАНИОН МОРОЗОСТОЙКОСТИ СЛЕДУЕТ ОСУЩЕСТ ВАЯТЬ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ ВСИ 150 68

PABOUAR ADMATUPA CTAND KNACCA A-III NO FOCT 5058-65 MAD-KH 35 FC, KNACCA A-II NO FOCT 580-71 MAPKH BCT 5 CR 2 H KNACCA A-I NO FOCT 380-71 BCCX MAPOK BCT 5, A AAR MOHTAMULIX NCTCAB-MAPKH BCT 3 CR 2.

§3 Особенности конструкций.

ЭНИКОТОО ЭНИНОВО- ВОТОВМ ХІНІСЭВСАВИ - ОРИМАЯ ИНДІХЕЧТОНОЗ ВИ ИМАДОПО ДАН ХІММЕВВИРИКОНОМО, ЛОКАВ ХІНІЧОВЗ И ФОПО ХІНІЧОВО В КАДА, УХОЗВ ОП ХАХАКАЯ В ВОТНЕМОМ ХІНІЧАБИТО ВИТВИВПОВОВ ВКД. СБОВЯ ИМАТИКП ЭММЕКЕАДО ИХУЕКЛЯ В АДУТАМДА ВСТЕМВИВА И ИТОКИ ИЗАКОВИТОТЕ ЭКОВІ, ХОКАВ ОНТОНОВОВ И ИТОКИ ПЕТЕМВИРИКОНОМО НУКАВ И ИТИКП ІНДУТАМДА ИЗНИВОВОВ ХУЕКЛЯ ТИЗИНАВОВ

В СОСТАВС ПРОСКІД ДАНЫ РАБОЧИС ЧЕРІСЖИ ПРОАСТИБІХ СТРОСНИЙ И ПРОАСЖУТОЧИМХ ОПОР В ДВИХ ВАРИАНТАХ, СТОСЧИБІС ОПОРЫ И ОПОРЫ СТСИКИ В СВЯЗИ С ТЕМ, ЧТО КРАЙНИЕ ОПОРЫ РАМНО

-HEBASDESHUX MOCTOR HE OTANHALOTER OF KRANHHX OROD REDECTUS BA-ADVINUE MOCTOR & REDOCKTO HX KONCTRUKLING HC REPREDANTES PANA-MCHTH COCAHHX OROD HE ROUBEACHH & ROCKTE, TAK KAK HX PASMEPH SABUCAT OF MECTUBIX YCAOBHU AAR TOTO, UTOBE HUM TUMBASKE THRO-ROTO ADDOCKTA DAMNO-MCDASDESHINX COOD! WCHNH YAPOCTHTE DACHET ФУНДАМЕНТОВ, В РАСЧЕТНЫХ АНСТАХ ПРИВЕДЕНЫ ВСС КОМБИНАЦИИ ченаний. Действиющих по обрези финдамента. Стойки и стрики опод РАССЧИТАНЫ НА ДЕФОРМАЦИИ ОТ НЭМВИВНИЯ ТЕМПЕРАТУРЫ. Всанчина асформации после замыкания конструкции не должил ПРЕВЫШАТЬ (ВКЛЮЧАЯ ДЕФОРМАЦИИ ОТ УСЛАКИ) 21 ММ В КАМАУЮ CTODONY 4TO ANY CXEMBI 15+21 x 3+15 COOTSETCTBYET HOMEHUND TEMпературы на 45° кроме того, при расчете опор читены ченаня OT BEPTHKAJAHON HATPYSKU, TODMOMEHUS, PABHOMEPHO - PACTIPEACACH -NOTO MEMAY BEENH DOMENTOWNER PHONE PARTY PROPERTY AND BEEN OTHE кроме того, читены левохов и косыг чавы льяни. DOODH CO CTONANA MOFYT ROHNERSHED ROHN NAMANOTO CO HOOD ABAA HE BOACE 15 CM ORODHI-CTENKH DACCUNTANHI HA ACADXOA C TOANHной абал 60 см, причем, проверена возможность косого члара ABANH NOA YEAOM 20° K OCH ONOPHI, C NAONAAHO ABANH AO 40 M2

Опирание концов пролетиых строений на Береговые опоры осуществляется через полвижные опорные части Предусматривается применение резиновых опорных частей типа рочеп 20-30-8,1 по вси 86-71.

Конструкция гнароизоляции принята по типовому проскту нив и 384/11, конструкция водоотводных трубок по типовому проскту нив и 384/10

§ 4. Область применения.

Разработациые конструкции рамио- неразрезных мостов и путепроводов применимы в нормальных каиматических условиях, те в районах с температурой наиболее холодиых счток до -40°С (в местностях с более инэкими температурами применение типовых конструкций также возможно при выполнении условий, изложенных инже).

РАСЧЕТНАЯ СЕЙСМИЧНОСТЬ ДОПУБИТА НЕ СВЫМЕ В БАЛАОВ ЗАПРОСКІНООВАННЫЕ СООРУЖЕНИЯ МОГУТ ПРИМСНЯТЬСЯ НА ВЕРТИКАЛЬНЫХ КРИВЫХ ПРИ УСЛОВИИ ЧЕТАНОВКИ БАЛАСЯ ПЕ ХОВАМИ НЕБОЛЬНАЯ РАЗИНЦА В ОТМЕТКАХ В ЭТОМ САРИЛЕ В ЗТОМИВАРИВАРИВАРИЗИВНЕНИЯ
ЧТОЛЬНОВОЕННЫЙ ВИДОВИНИВАЮЩЕГИ СЛОЯ ИЛИ АСФАЛЬТО БЕТОНА

Типовые коиструкции могут быть использованы и для мостов на горизонтальных кривых. В этом случае используются без изменений голько балки и стойки

РАМНО-НЕ РАЗРЕЗНЫЕ КОНСТРУКЦИИ МОГИТ ПРИМЕНЯТЬСЯ СО СВАЙНЫМИ ФИНДА МЕНТАМИ И С ФИНДА МЕНТАМИ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ В СЛИЧАЕ ЕСТЕСТВЕННЫХ ОСПОВАНИЙ ГРУИТЫ ДОЛЖИЫ ИМЕТЬ МОДИЛЬ ДЕФОРМАЦИИ НЕ МЕНЕЕ 200 КГ/СМ², ЧТО ОПРЕДЕЛЯЕТ РАС-

четную осадку опор не волее 1.5 см Естественное основание на просадочных и набухающих грунтах исключается. Условное фасчетное сопротивление грунтов основания должно быть не менее $20\,\mathrm{kr}/\mathrm{cm}^2$

НСОБХОДИМО ОТМЕТИТЬ, ЧТО КОИСТРИКЦИИ ПРОЛЕТНЫХ СТРОЕНИИ БЕЗ ИЗМЕ НЕНИЯ МОГИТ ПРИМСИЯТЬСЯ И ПРИ БОЛЬШЕМ КОЛИЧЕСТВЕ ПРОЛЕТОВ В ЗТОМ СЛИЧАС ОПОРЫ ДОЛИНИ БЫТЬ ПЕРЕПРОЕКТИ ОВЛИШЕ СЛЕДИЕТ ТАКЖЕ ИМЕТЬ ВВИДИ, ЧТО КОИСТРИКЦИИ ПРОЛЕТИЫХ СТЕРОЕНИИ РАМИО-ИСРАЗРЕЗИОЙ СИСТЕМЫ МОГИТ БЫТЬ БЕЗ ИЗМЕНЕНИЯ ИСПОЛЬЗОВЛИНЫ В НЕРАЗРЕЗИИХ МОСТАХ, ИО Я ЭТОМ ГЛИЧАС НА ПРОМЕЖИТОЧНЫХ ОПОРИХ ДОЛИНЫНЬ БЫТЬ ПОСТАВЛЕНИ ПОДЛЯЖНЫЕ ОПОРИЫЕ ЧАСТИ.

AMATHOM NOARDON 28

монтаж конструкций производится кранами на автоходу грузоподъемностью 20 т <u>Элементы монтируются</u> путем подачи снизу

об Косые сооружения

Приведенные в проекте конструкции примсияются в сооружениях с ко синой не волее 50°, причем при косых сооружениях форма элементов и армирование видоизменяются незначительно Горцы бласк скашиваются, как показано на ансте 68 марки плит сохраняются, за исключением плит, примечкающих к опорам, которые скашиваются, как это показано на ансте 70 бетоинруемые на месте надопорные ччастки сохраняя армирование, чалиняются в соответствии с косиной такжак это показано на ансте 67.

КОИСТРУКЦИЯ СТОЕК СОХРАНЯЕТСЯ ПОЛНОСТЬЮ, МЕНЯНОТСЯ ТОЛЬКО КОЛИЧЕСТ-80 ИХ И РАСПОЛОЖЕНИЕ В СООТВЕТСТВИИ С УГЛОМ КОСИНЫ ТАК, КАК ЭТО ПОКАЗАНО НА ЛИСТЕ 66 ТАКИМ ОБРАЗОМ, ПРИ ПРИВЯЗКЕ КОСЫХ СООРУЖЕ-НИЙ ИС ТРЕБУЕТСЯ ПРОИЗВОДСТВА КАКИХ-ЛИБО ДОПОЛНИТЕЛЬНЫХ РАСЧЕТОВ

\$7. Северное исполнение.

ДЛЯ ПРИМЕНЕНИЯ В УСЛОВНЯХ ИНЗКИХ ТЕМПЕРАТУР (ПРИ ТЕМПЕРАТУРЕ НАИБОЛЕЕ ХОЛОДНЫХ СУТОК ИНЖЕ-40°С) ТИПОВЫХ КОНСТРУКЦИЙ РАМИОНЕВАЗРЕЗНЫХ МОСТОВ И ПУТЕПРОВОДОВ, НЕОБХОДИМО ИЗМЕЦИТЬ МАРКИ
СТАДЕЙ, ВМЕСТО СТАЛИ МАРКИ 35°С ДОЛЖНА БЫТЬ ПРИМЕНЕНД АРМАТУРА
МАРКИ 25°С2°С; ВМЕСТО СТАЛИ ВСТ 5 СП 2 - АРМАТУРА НОГТ ПО ЧМТУ-1-944-70, ВМЕСТО СТАЛИ МАРКИ ВСТ.5 - АРМАТУРА МАРКИ ВСТ.5 СП 2 ПО
ГОСТ 380-71

При применении типовых конструкций (с указанными изменениями) в северном исполнении количество средних пролетов в секции Π должио выть не билее 2 кроме того, стойки для схем $15+18 \times \Pi+15$ и $12+15 \times \Pi+12$ при высотах от 7.0 до 9.0 м для всех габаритов должны быть дрмированы вместо $4 \oplus 20 - 4 \oplus 25$ ТАК, как это принято для опор от 5.0 до 7.0 м Опоры-стенки сохраняются без изменений.

При производстве работ для сооружений в человиях северной климатической зоцы подлежит руководствоваться ВСИ 155-69.

TK	РАМНО — НЕРАЗРЕЗНЫЕ МОСТЫ И ПУТЕПРОВОДЫ	856%
1972	Поясиение	AHCT

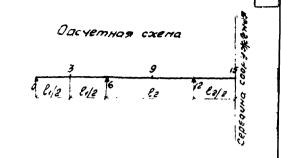
						е опо стойку								0110 (HA	РЫ - СТ Один О	EHKH (AUK)				
em.	От низл пролетного строе ния до обреза	y	сплпя	по вер	ху ста	ek	APMADO	ILIMM MO-	BOCEPHIL	на греци-	OT HH34 HOONETHOTO OTPOCHH9 OO OODESA	í	CHAMA .	по верх	ку стен	ки	Принягое Армиро-	Действу- ЮЩИЙ момент	Mument, BOGOPHHA	HA TPEMH-
క	фундамента Н. М	ļ	N, r	N,"	Mirm	M,TM	F (cm2)	NENT Ne _{TM}	CEYENIC	OF BCCX CM.	. 60 06реза фун бамент а Н. м		N,r	N."	MITM	MITM	F (GM2)	Ne, TM	cesennen	OT BOEN CHA
لم الم	0r 5	max	105,9	87,4	23,6	22,6	Fa:Fa'	37, 3	37,4	< 0,025	Or 6.0	max	50, 2	41.7	38,8	37.6	 Fa = Fa'	,	45,1	<0025
x n + 15	do 7	min	80,8	82,4	23,6	22.6	4\$28A-E F ₁ =24,53	}	34,7	∠ 0, 025	do 7,5	min	40.6	41,7	38.8	37,6	12 \$224.55 Fa 45,61		44,9	¹ ~ 0, 02 5
15 + 21x n = 1.	0r 7	max	115,8	97,5	18,9	17,1	Fa - Fa'	36, 6	38,6	<0,025	Or 7,5	max	50,2	41,7	27,3	26, 2	Fa=Fa' 8\$22AII	34,2	35,3	< 0,025
	do 9	min	55,4	63,1	18,9	17,1	+628A- <u>lī</u> √a=24,63	27,2	30, 7	- 0,025	<i>до 9,0</i>	mın	40,6	41, 7	27,3	26,2	Fa:30,41	33,1	33,8	<0,025
5	Or 5	max	89,6	72,7	21,4	20, 3	Fa=Fa'	33, 1	32,5	< 0,025	0r 6, 0	max	43,8	35,6	33,0	31,9	Fa = Fa'	39,2	39,4	<0,025
12.3		mın	72.8	72,7	21,4	20,3	4\$25A·III Fa :19,64	30,8	30,3	<0,025	∂o 7,5.	min	35,4	35,6	33.0	31,9	ra.38,01	37,7	38,1	<0,025
15+18x1 n. k.	0r 7	max	89,6	72 7	16,1	14,9	Fa=Fa	29.0	27,9	-0,025	Or 7,5	max	43,8	35,6	23,7	22,7	Fa: Fa'	30,0	29.3	< 0,025
	<i>до 9</i>	min	72,8	72,7	15,0	13, 6	1φ20A <u>=</u> Fa=12,57	27,6	26,1	<0.025	do 9	mın	35,4	35,6	23.7	22,7	69221 <u>-</u> 11 Fa=2281	28,8	27,3	< 0,025
	0r 5	тах	87	69.2	19, 2	18,2	Fa: Fa	30,5	32,0	<0,025	<i>Or 6, 0</i>	тах	36,5	29,1	28,6	27,5	Fa=Fa	.33,1	33,0	<0,025
33	do 7	min	65,2	62.3	19, 2	18, 2	4 \$25A <u>i</u> i Sa=1964	27.7	28,8	<0,025	∂o 7, 5	min	29,7	29,1	28.6	27.5	8\$22A <u>#</u> Fa=30,41	32.7	31,7	<0,025
12+15×n+12 n=1.23	0r 7	ınax	87,0	69.2	14,5	13,1	Fa=Fa' 4 \$201 [[29,6	28, 1	< 0.025	Or 75	max	36,5	29,1	21,0	19,9	Fa=Fa	26,2	28,1	< 0,025
. 1	009	min	65, 2	62, 3	145	13,1	F=12,57	25, 8	24,8	<0,025	do 9,0	mın	29,7	29,1	21, 0	19, 9	6\$22A-1 <u>1</u> fa=22,81	25,1	26,4	<0,025

TK	Рамно-неразрезные мосты и путепроводы	856
1972		Aven

					î î	ОСЧНЫ	e onop) PI			7			Опоры	стен	КИ				ـــ
	CXCMA	PABADUT	н.		Усил	10 RH	OBDESA	ФЯНТИ	MCHTA		T	T	Усил		pesy p		TA			
			W.		N, T	N, T	M.TM	Mitm	G, P	Q,H	1 H,	-	N, F	N,H	M, IM	Mitm	Q,r	Q,H		
		F-85-10×2		max mun	432,9	356.4 265.0	88.2	86, 2	35,2	34.3		max	482.2 275,1	401.4 310.0	279,2	276.8	93,2	92.4		
		r-10+1.5×2	5	max min	524.2 278.1	441.8 315,7	105,5	103,4	42,1	41.3	6	max	585,1 328.4	497, 4 371.3	343,4	341.0	114.6	113,8		
		P-11+1.5×2		max min	555,9 302,0	468.4 342.3	105,5	103,4	42.1	41,3		max	623,7 358,0	530.3 404.2	315,5	373.1	125,3	124.5		
	+ 15	1-85-10-2		max	436.5 237.2	359.6 268.2	64,8	59,2	18.4	16.8		max	49 7,2 287,5	414.8 . 323,4	190,7	187 7	50,8	50.0		
	21×n	F-10+1.5×2	7	Wri wax	528.7 281.6	445.8 319.7	70,5	67.7	20,2	19.4	7.5	win	603,7 343,0	514.0 387.9	231.3	228,3	61.6	60.8		
	+	1-11+1,5+2		wrv wax	560.4 305.5	472.4 346.3	70,5	67,7	20,2	19,4	_	nun	3740	548,5 422,4	2506	248.6	ex0	66. ì		
	15	P-85+10×2		max min	439.7 239.6	271.0	75,4	68.2	16,7	16.1		win won	512.3 298.6	337,3	146.0	142.4	32,6	31.7		
		F-10+1,5 = 2	9	max mux	532.7 284.2 564.4	323.2	76,8	69.8	17,1	15,5	9	min	823,4 357.5	530 B 404 S	174.0	170,4	38,8	58,0		
		P-11+1,5×2		min	308.5	475, 9 349 8	76.8	69.8	17,1	15,5		max	664,6 389.9	566.7 440.6	188,0	184, 4	41,9	41, 1	_	
		1-85-10-2	_	uru war	365,4 197, 2	304.3 222.2	77.4	75.4	310	30.2		uni	414.7 237.9	349.3 267.2	238,4	236,0	79,6	78,8	EXEMA DITO PACA:	
		1-10+15×2	5	iuri iuox	466.7 243.8	389.0 275.7	92.0	89.9	36.8	36.0	6	intir intir	534,5 299.8	337.6	319,4	317.0	106.6	105,8	7,000	^
1	2	-11+1,5×2		max	466.7 245.8 369.0	3890 275 7	92.0	89.9	36.8	36 ,0		uni	534.5 299.8	450,9 357,6	519.4	317.0	106,6	105,6	111/17/	1.1
4	3+U×	r-8,5+10 <2	_	uru wax	200, 0 471, 2	307.5 225.4	564	52.6	16,1	15,3		mur	429.7 250.3	362.7 280.6	166.7	163.7	44.4	43.6		
	+ 18×1	1 10+1.5×2	7	max	247.3 471.2	3930 279.7	63.8	61.0	18.3	17,5	7.5	intr	554,9 315,8	355.8	218,6	215,6	58,2	57,4	Ju.	
	5+	r-11+15×2		max max	2413	- 279.7	63,8	61.0	18.3	17,5		mun	554.9 315,8	355.8	218,6	215.6	58.2	57,4	BHA CEO	KY
	•• ••	r-85+1.0+2		wox	202.4 475.2	310.3 228.2 396.5	52.2	48,6	11.6	108		mru mox	261.4	576.6 244.5 487.3	129.2	125,6	28,7	27.9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		r-10+1,5 * 2	9	mun	250,3 475,2	283 2 396 5	56,5	52.9	126	11,8	9	iur iur	331.7	374.0 487.3	164,9	161.3	36.6	35,8	J _m	•
		F-11+15*2		min	250.3 291,0	283 2 237 9	56.5	52,9	12.6	11.8		min	515,4 331,1 340,3	374.0 282.9	164,9	161,3	36.6	35, 8	Ospes O-TA	u
		F-8,5+10+2	_	min max	145.8	166.1	68.7.	66.2	21.2	26.4		war wiri war	186.5	2111 546.6	201.0	201,6	68,2	67.4		
		r-10+1,5×2	5	mun. max	167.1 389.6	3187	80,5	78,4	32.1	51.5	6	min	217.4 457.4	241.4 380.6	249,4	247.0	85,3	82,5	· 	
	12	F-11+1.5×2		mun	191.2	219.5 241.1	80.5	78,4	32.1	31.3	1	min	247.2 355,3	281.4	212.1	2697	90,9	90,1		
	ئے	F-85+10+2	7	min	148,6 360.3	169.3 295.0	51,8	490	14.8	14.0	75	min	198,9	224.5 363.2	145,1	142,1	38,6	37,8		
	+15×n+1	F 10+15 4 2	1	mu. max	170.6	195.8 322.7	57,9	551	16,6	15,8	75	min	2520	26 4.0 398.8	174.3	171,3	46.4	45.6		
	15.	[-11+15x2		mun. max	1947	2235	57,9	55,1	16.6	15.8	1	inun.	263.2 370.4	299,6	188.9	185,9	50,3	495		
		F-8,5+10+2	_	win	1510 364.3	172,1	49,8	45,8	110	10,2		min	210.0 455.0	238.4 519.8	114.8	111,2	25,5	24.7		
1		F-10+1,5×2	9	min max	1736 398,1	199.3 326.2	52,9	493	11.8	11,0	9	min	246.5 498.3	2806	135,0	13(4	30,0	29.2		
	L	I Helox	J	mun	197,7	2210	52,9	493	11,8	11,0	<u>i </u>] min	2181	3.7.8	145,1	141,5	32,2	31,4		
					[TK		PAME	10 - HED	HESGEA	ые <i>і</i>	MOCT	ı n n	a Ca bor	оты				8	356
					i	L														

Усилия по обрезу

АТИЗМАДИЕФ.


Опоры

Расчетиый лист

CXEMA ORODH **PACA**

BHA CLOKY

	VO.	""		KI	PPMAIU	BHBIE	ycus	109			PACY	PTHOIE	yeu)	109		Seu.	709.
CXEHA		CHI	OBAHUE WUU	MAZA	THNOIE Y3KH		EHHOLE OYBKU	67 MM	APHOIE NU A	MOCTO.	AHHBIR DY3KU	-	HHBIE		PP HOIE	אנטסדו סכן פחפ	TOIR
wenn	re	u Yen	vuú	[Y0c76	<u> </u>	H-30 + TONNA	HK-80	100109H HA 9 H-30 TODOA	100.705H HR9 HK-80	l	<u> Î</u> YACTB	H-30 + TODDA	HK-80	9HNA3 N-30	10CTO- 9HHQS + NK-80	HA 1,004. HOCT6	HQ TOEUJU- HOCTOÚ KOCTO
			max	253	3.9	286	44.8	578	740	27.8	5.9	Y90	Y9.3	82.7	83.0	83.0	
		3	min	193	3.9	- 10.0	-122	132	11.0	17.4	3.5	-17.1	-13.Y	38	7.5	3.8	13.2
			max	0	-17.2	8.0	7.3	-9.2	-9.9	0	-15.5	11.5	80	- 4.0	~7.5	-4.0	- 9.2
	M	12	min	- 19.5	-172	-29.7	-222	-66.Y	-589	-214	-240	-426	7 × 8	-880	-69.8	- 88.0	-66 Y
\$	ĺ	1,5	max	50.3	8.2	327	400	91.2	98.5	553	11.8	53.7	44.0	120.8	1111	1208	91.2
	TH	15	men	39.7	8.2	-10.8	-8.2	37.1	39.7	356	7.9	-17.9	-90	251	340	25.1	371
24× Or		0	1		7.0	10.1	17.0	12.1	240		8 y	17.4	18.7	258	271	27.1	-
6			nes	- 6	8.	3.5	5.1	0.7	2.3		3.3	6.0	5.6	2.7	23	2.7	_
	_	3	APAB.	ء ﴿	2.8	-5.5	-8,1	-83	-109	-	3.3	-9.y	-89	-12.7	-12.2	-12.7	_
2	Q	6	nes.	- 1	2.5	-125	-205	-280	-33.0	-/	5.1	-21.6	-22.6	-367	-37.7	-377	_
	7	12	npas.	18	19	13.1	16.9	0,50	308	1	16.8	21.5	186	383	35.4	38.3	_
		15		(7	4.5	5.5	4.5	5 .5		0	7. Y	61	74	6.1	7. Y	_
		,	max	27.8	6.1	341	54.6	68.0	88.5	30.6	9.0	586	60.1	98.2	99.7	99.7	77.6
		3	min	199	61	-10.2	-13.8	15.8	122	17.9	5.5	-17.5	-15.2	59	8.2	5.9	15.0
		10	max	0	-147	8. 5	7.8	-6.2	-6.9	0	-133	12.7	86	-0.6	-4.7	-0.6	-6.2
Ŋ	M	12	min	-15.3	-147	-30.9	-271	.60.9	-57.1	-169	-20.7	-460	-29.8	-83.6	-67.Y	-33.6	-60.9
*	711		max	39.9	64	345	Y8.7	80.8	950	739	9.2	580	53.6	111.1	106.7	111.1	85.3
18×1	,,,	15	min	32.6	6.4	-118	-10.0	27.2	290	29.3	57	-19.7	-11.0	153	24.0	15.3	27.2
90	7	0		ě	9.4	121	19.9	20.5	28.3		0.1	207	21.9	30.8	320	320	
*		,	neb.		?7	4.1	62	1. Y	3.5		3.2	7.0	68	38	3,6	3.8	
15	2	3	npob		27	-6.7	-10.2	-9.Y	-129		3.2	-116	-11,2	-14.8	-/YY	-148	
	Q	6	nes.		3,8	-15,1	-248	289	-386		6.6	-26.0	-27.3	- y2.6	¥39	- 43.9	
	7	12	прав		3.6	15,4	21.5	0.0ء	35.1		6.3	26.1	23.7	<u> </u>	Y0,0	Y2, Y	
		15			0	5.2	7.6	5.2	7.6 82.5		2	8.6	8.7	89.Y	84	8.6 925	710
		,	.770 %	20. Y	47	34.3	57.4	59.4	29	224	7.0	60.0	63.1	-3.2	92.5	-3.2	6.3
		3	min	75.2	47	-12.1	-/7.0 9.3	7.8 5.7	-62	13.7	4.3	15. Y	10.2	7.S	-37	1.5	-5.7
		10	max	0	-15.5	98	-31.7	-625	601	-142	-13.9 -21.6	-53.2	-3 × 9	-800	- 70.7	-89.0	-62.5
12	M	16		12.9	-/5.5	-3 ¥1	55.0	77.3	93.9	35.0	10.1	65.8	60.5	1109	1056	1109	829
ů	7 71	15	max	31.8	-7/	384	-11.6	18.6	20.6	21.2	6 Y	-536	72.8	4.0	14.8	Y. 0	18.6
ž,		men	25.1	21	~/3.6 15.5	26.0	23.6	341		29	27./	286	370	385	385		
~		0		8.1 -2.8		5,5	83	2.7	55	د		27	9.1	63	67	6.5	1
â		3	NEB.			-8.8	-13.2	-11.6	160		. y	-15 Y	-145	-188	-17.9	-188	• 1
	Q		1006	-13	2.8	-19.3	-32 v	- 330	-46.1	-11		33.8	-35.6	-50€	-52. Y	-52. Y	1
	7	5	neb.			18.5	27.8	32.5	41.8		7./	31.2	30.6	489	47.7	V8.9	- 1
	7	12	npal		2.0	7.6	101	7.6	10.1			13.0	11.1	13.0	11.1	13.0	
		15			1						1						

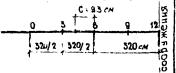
B coombemenbuu e принятым порядком BO3 Segenus coopyxenus, useu Garaque momenmo \$ bankax onpedengnuce us yonobug padamu KONCMPYKYUU & 2 cmaduu. 1 cmadua - banka pabamaem kak paspes HAR nod Tracms nocmograpoù nacesaku (Bec болок, плит и бетона вменеличивания) 2 cmodug - banka pabomaem kak Hepagos HAS nod I Yacme nocmoshHOU HOEDY3KU (bec nokobimua nocesme vacmu, mpamyоров, перил и реакции, возниконощей от Ічасти постоянной наврузки на временных опорах) и временную нагрузку. Kpome mozo, yymeno macnuyeckoe Перераспределение усилий на опоре om Tyacmu nosmosnnoù noepysku Poche vero useusaromue momento, om 1 u 2 cmaduú pasomos sanok CYMMUPYIOMCA. MOREDENHOIR CUNDI ORDERENEHOI US ADECTOR MORENUR, YMO CUEMEMA C CAMOES HAYANA pasomaem kak Nepaspeshan

_			1	
	TK	Рамно- неразрезные мосты и путепроводы:	856	
1	972	Расчетный лист Усилия в балках пролетного строения.	lugm	

РАСЧЕТ БАЛОК ПО ПЕРВОМУ И ТРСТЪЕМУ ПРЕДЕЛЬНОМ СОСТОЯНИЯМ

CXEMA	н	ACNU	зин аво н й и	PACUE	SHHIO	HA R	Л ПРСДСЯБНОМУ ВОЧНОСТЬ МОМСНТ	NOWA COCLO-	DACY NO KOC GEVEN	MEN
	d	и 1949:	เหม่	DACUETUINA MOMENT	NON NAC	TUP H	M npes.	трешино- стой кость Величина Раскрытия	none bey.	CHAA, SOCAMHUMA CEUR
		-		M,TM	Fa CM2	fa: cuz	IM.	тренин	Q p	G Apea
		3	max	83, 0	48,3	0	91,8 -	0.012		
		1	min	3.8	ALTER CO. LINESPER					
15 N n	Μ,	12	max	-4.0		_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
15-21×n+15	TM		min	-88.0	48,3	0	90,5	9018		
		15	wox	120.8	64.3	0	118,5	0,013		
			1 min	25,1		7+				
	Q,r	C =	210 CM			-		··,	32.1	37.1
		3	max	99,7	56.3	0	106,0	0.012		
			min	5.9		,,			·	
15+18+N+15	M,	12	max	· 0,6		72			-	
10410411412	TM		min	-836	48,3	0	92.2	0.016		
		15	max	111.1	64.3	0	118,5	0.012		
		لـــــا	min	15.3						
	τ,β	C	210 CM				-	******	35.8	37.0
i i		3	max	92,5	48.5	0	92,3	0.012		
		٦	min	-3,2						
12-15-n-12	М.	12	max	1,5						
12, 19-16-15		14	min	- 89.0	48,3	0	93,5	0.016		1
	TM	15	Kum	110,9	64,3	0	118,5	0,011	i	- 1
		١٥	min	4,0						
	Q,7	C =	175cm				- +		42.3	47,1

Прогивы валок в середине пролета


				DANHON DANHON	OT BP	сменнои	НАГРУ:	SKH, CM
CXEMA	пролет	MADKA		M	H-	50	нк	-80
DAUMA	М	БАЯКИ	Ічасть	IL YACT b	1 1/4	СТНОМЕ- ПРОГИБА ПРОЛЕТИ	Величи на прогива	uboreta ubornev nne othome-
	15	Б-1	2,90	0, 25	1.02	1440 €	1.60	920 l
15 + 21×n+15	21	B-2	11,40	1,00	3.04	8 069	3.80	550 L
18 19 . 0 . 15	15	5-3	3, 15	0.29	1.15	1280 €	1.85	800 C
15 + 18 + n + 16	18	5-4	6.90	0.64	2,20	820 l	3.22	560 (
12+15+11-17	12	6 - 5	1.50	0.14	0.63	1850 €	1.06	nda e
12 13 11 11	15	5-6	3.50	0,39	1.58	850 l	2.27	3 000 t

HA	HMC-	НОРМ	ATHE	HPC	ACNVI	19	DAG	чети	ыс	усил	ия	yeur	. ,	PACHET		SE SE	PACUE	i M
	A LA LI LA	OTOON RAHUR		H K-80		эшида Rhri	-0730N RAHHR	H-30	1		ndug. Ruri	PACH		li ube	CABABHO CAHHOCTI UHOCTI		PANAS A	MAN THAN
1	и нагру		ARAOT		H-30 HK-M		KA HATP#3	+ TOANA	M. OU	пост	noct HK-80	HA NDO¥UOŒ	TPE M MUO. CTOH KOCA	при площа дн арматуры Fa, см ²		Acact no Acabuday HA TPCHH BCAHUHHA	2000 2000 2000 2000 2000 2000 2000 200	23 CM
	коночь	31.8	13.0	-133	-44.8	-45.1	-56.0	-184	-14.7	-54.4	-50,7	-54.4	44.8	34.4	57.2	0.02		
Μ,	3	186	10,3	15,2	28,9	33,8	22.2	14.7	16.8	36.9	39.0	39.0	50.8	22.D	41.2	0.02	-	_
TM	6	28,1	-11,5	20.3	39,4	48.4	-33,5	-16.2	-22,5	49.7	55,8	-55.8	44.3	34.4	57.2	0.02		-
a,	3	4.5	80	14,0	12.5	22,0	5,4	11,5	15.4	16.9	20,8	20,8	15.7				C. 2	03.0
T	6 sea	45,7	224	35,4	68.1	81.1	54.6	32,0	390	86.6	93,6	93,6	74.0				51.3	93.0

очинкотого вмоналедей вмоналедей вмоналедей в вилия в плитах и расчет плит по первом плитах в плитах и на 1 пос м плитах

					HOPA	ATHE	INC	усили	Я			D.	Счет	HNC !	усилия	7		Усилие	DACHET NO	первомч
PAGUETHUM RDOJET EARKH	РАСЧЕТ- ИМИ		иснование Или и И	-072011 RAHUR			ACHO	OTHOFO IBHЯ BHSKK		лня Лня	-0720N RAHUR	07 051 1640 540	НИДАМ	OT MEC NE HO	RHST	RCH1 CAWWI	ия Пия	эотринцп Аля расчета Аля	ни и од л Иреће уријума	
unna,	пролеч Плиты.	ce		PASKY HYL.				1	постая н		нагруз	٠	(1		nocro-	-OTOOn	причность	предельный	I MOMENT
M	M		ја середине		H-30 TOANA	HK-80	H 50	HK-80	RAH OZ H A n ŘOT	РАН 08-ХН	KA	H-30	иK-80	н-30	HK-80	RAHHR DE-H ADAOT	HK-80		при площади арматуры Еч	M npeA
21 ()	0.85	44	DANTH	0.03	0.71	1,34	0.59	0.62	1.33	1.99	0.04	0,99	1,47	0,83	0,68	1.86	2,19	2,19	9,05	2.08
A) ()	0.00	TM	MA OROPE MTHEN	- 0.04	- 0.30	-0,60	- 0.83	-0.87	- 1.17	- 1,51	- 0,05	-042	-0.66	-1.16	-096	-1,63	- 1,67	- 1,67	9,05	2,08
180	1.15	M	в серелин е Па иты	0.05	0.59	1,26	0.88	1.02	1.52	2,33	0,06	0,82	1,38	1.23	1,12	2,11	2,56	2,56	11,31	2,56
100	1,10	TM	HA ORODE	-0.07	-0.27	-0,53	-1,23	-1.42	-1.57	-2,02	-0,10	-0,38	-0,58	-1.72	- 1,56	- 2,20	-2,24	- 2.24	11,31	- 2,56
15.0	1.75	M	P CEDSTANS	U.II	0.58	1.03	1,14	1.52	1.83	2,46	0.14	0,82	1,13	1,60	1,45	2,56	2.12	2.72	12,44	2,79
		TM	STERNE AH	- 0.15	-0,19	-0.44	- 1,60	-1.86	1 194	245	-0,20	-0,27	- 0,48	-2,24.	-205	-2,71	-273	-273	12,44	- 2,79

РАСЧЕТНАЯ СХЕМА НАДОПОРНОГО ВЧАСТКА

RHHAPSMAGR

- и Настоящий лист смотреть жестно слистом и 6
- УИНФОЛОДАН ВИНАВОВИНИЙ В НАТОМИЙ В НАТОМИДА В ТОЯТОМИЕ ДЕМОЛА ДЕМОЛА В КИМОЛА МИ ВЕЛОВНАН ОП ОТЯНИЦП МЯНЛНОВ

Рамия - неразрезные масты и питепроводы 856

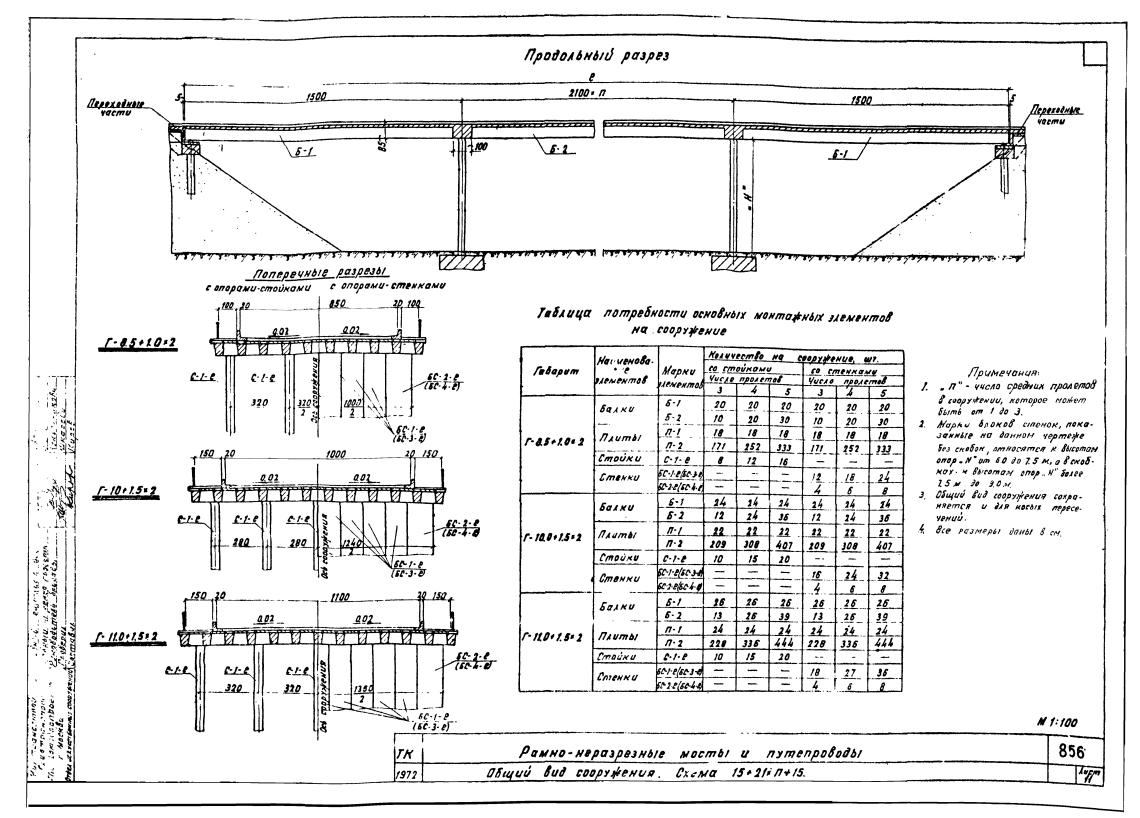
972 Расчетный лист Расчет сечений балок Прогибы валок Усилия и расчет сечений плит и надопорного участка.

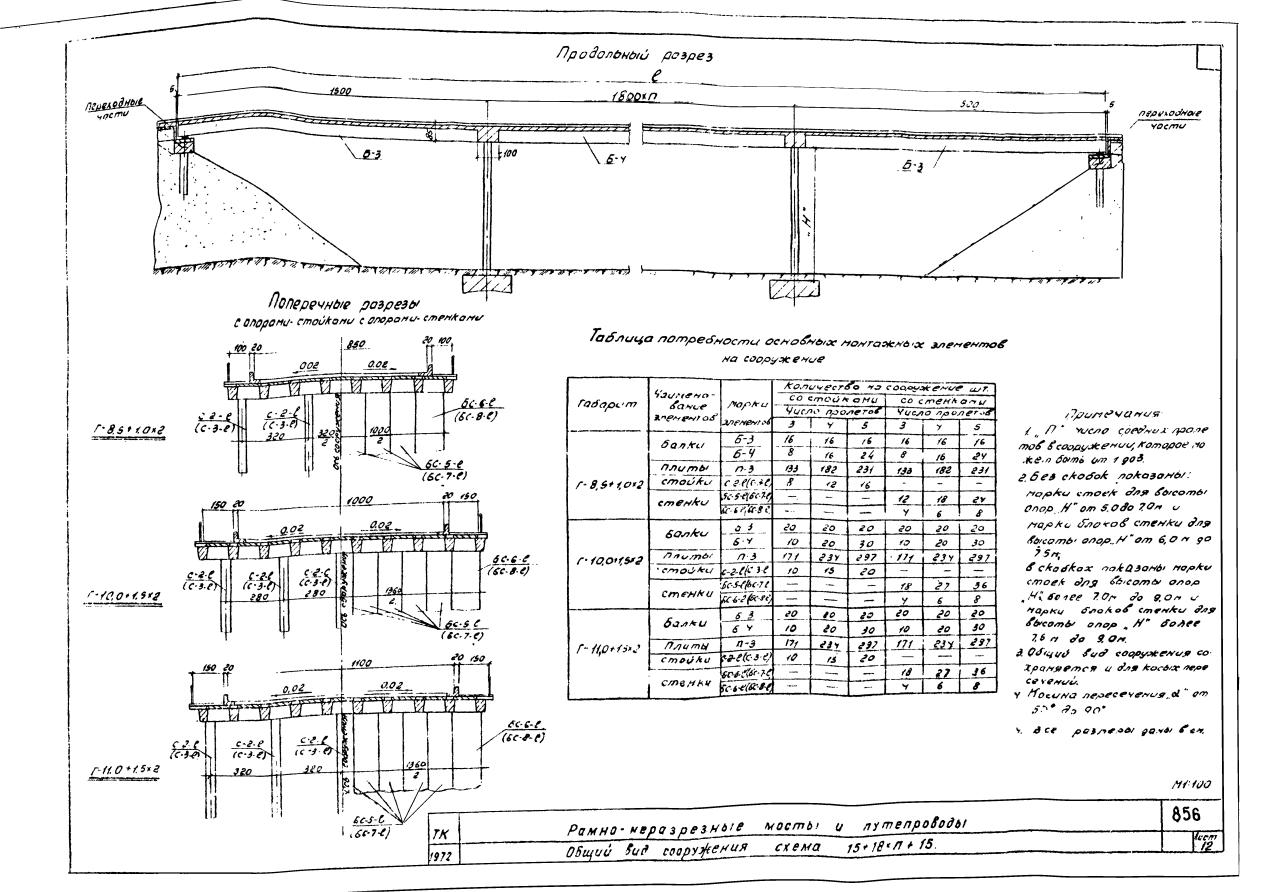
| Пист

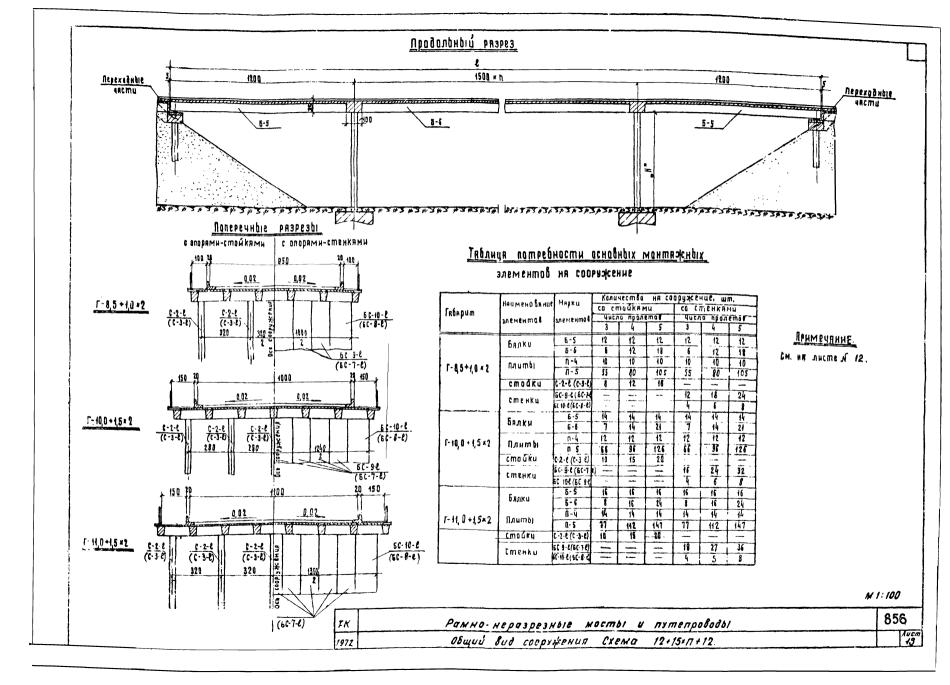
1			C		н b 1			Hai	ana	рныц	участо К			C m	е н	K U		Hado	порне	k <u>u</u> biú yya	CTOR
		Sh core	Kon-80				рматурная			Сталь ар			Бето			рматурная	Бет			армат <u>і</u>	
, , , ,			CTOEK	DEI	0 n	Vanceal T	Классая- Т		0538 M	Класса А-І	Класс Я-Ш	CTEHKU		OBZ EM	Клоссяя-	[Knorca A-I	1			КлассаяТ	
DMSK	idaapui				HA GUODA PP GEN	T	T		Ha onak		Т	M	Mapka			T	MOPKO	HO ONOP		т	Ţ
	ſ-8,5+1,0×2	5 7 7	4		3,7 5,0 5,0 6,2	0,13 0,15 0,15 0,18	0,99 1,30 1,30		8,3	0,09	0,52	15 75 9		22.8 27, 9 27. 9 33, 0	0, 65 0, 71 0, 71 0, 83	4, 67 4, 94 3, 29 3, 86	1	8,7	0,01	0,02	0,08
ce + 15	F-10+1,5×2	5 7 7	5		4, 5 6, 2 5, 2 7, 8	0,16 0,19 0,19 0,23	1, 24 1,62 1,62 2,01		10,0	0,11	0,63	15 15 15		28,3 34,6 34,6 41,0	0,80 0,88 0,88 1,02	5, 09 5,18 4,11 4,82	1	10 8	0,01	0,02	0,06
15+24×n+15	F-{ + ,\$ = 2	5 7 7 9	5		6,2 6,2 7,8	0,16 0,19 0,19 6,23	1, 24 1, 62 1, 62 2, 01	-	fQ,8	0,12	0,68	7,5		31, 1 38,0 38,0 45,0	0,87 0,96 0,97 1,12	5, 60 6, 80 4, 52 5, 30		11,8	0,01	0,02	0,06
	ſ-8,5+1,0×2	5 7 7 9	ų	0.0	3,7 5,0 5,0 6,2	0,13 0,15 0,15	0,19 (,0.3 0,6.6 0,8%	Û	8,1	0,09	0,51	1,5 7,5 7,5 9	0.0	27,8 27,9 27,3 33,0	0,63 0,70 0,70 0,80	3,39 4,14 2,46 2,90		8,6	0,01	0,02	0,06
18×n + 15	[-10+1,5×2	5 7 7 9	5	30	5,2 5,2 7,8	0,16 0,19 0,19 0,23	0,99 1,49 8,83 1,83	30	10,2	0,11	0,64	75 75 9	tr3	31,1 38,0 38,0 45,0	0,85 0,94 1,08	4,67 5,65 3,39 3,98	300	11,0	0;01	0,02	0,06
+	Γ-11+4,5×2	5 7 7 9	5		4, 6 6, 7 6, 2 1, 8	0, 16 0, 19 0, 19 0, 23	0,99 1,29 0,83 1,03		10, 3	0,14	0,64	7,5 7,5 9		31,1 30,0 38,0 45,0	0, 85 0, 95 0,94 1,08	4 67 5,65 3,39 3,48	1	H, 3	0,01	0,02	0,86
	r-8, 5+(0×2	5 7 7 9	4		3.7 5 u 5 0 6 2	0,13 0,25 0,15 0,18	0,79 1,03 0,65 0,82	-	8 , 0	0,09	0,54	1,5		27,9 27,9 33,0	0,54 0,74 0,78 0,80	2.71 3,47 2,46 2,9		8,5	Q,D4	0,02	0,06
15×n - 12	F-10+1,5×2	5 7 7 9	5	!	6, 2 6, 2 7, 8	0,16 0,19 0 19 0,23	0,99 1,29 0,83 1,03		9,6	0,10	0,60	7,5		34,6 34,6 44,0	0,80 0,98 0,98	3,39 4,35 3,08 3,62		10,4	0,01	0,02	0,06
+	ſ-{{+1,5×2	7 7 9	5		6,2 6,2 7,8	0,16 0,19 0,19 0,23	6,99 1,29 6,83 1,03		11,1	0,12	0,70	7.5		38,8 38,0 45,0	0,87 0,97 0,94 1,08	3,73 4,79 3,39 3,98		12,1	0,01	0,02	0,06
							[=::			Pan Ha-	неразри	• 2 <i>W</i> A	/P A	/ 0 C PT	A						-
							1972			Cropb1	Tabluc		0500			путепров	80001				8

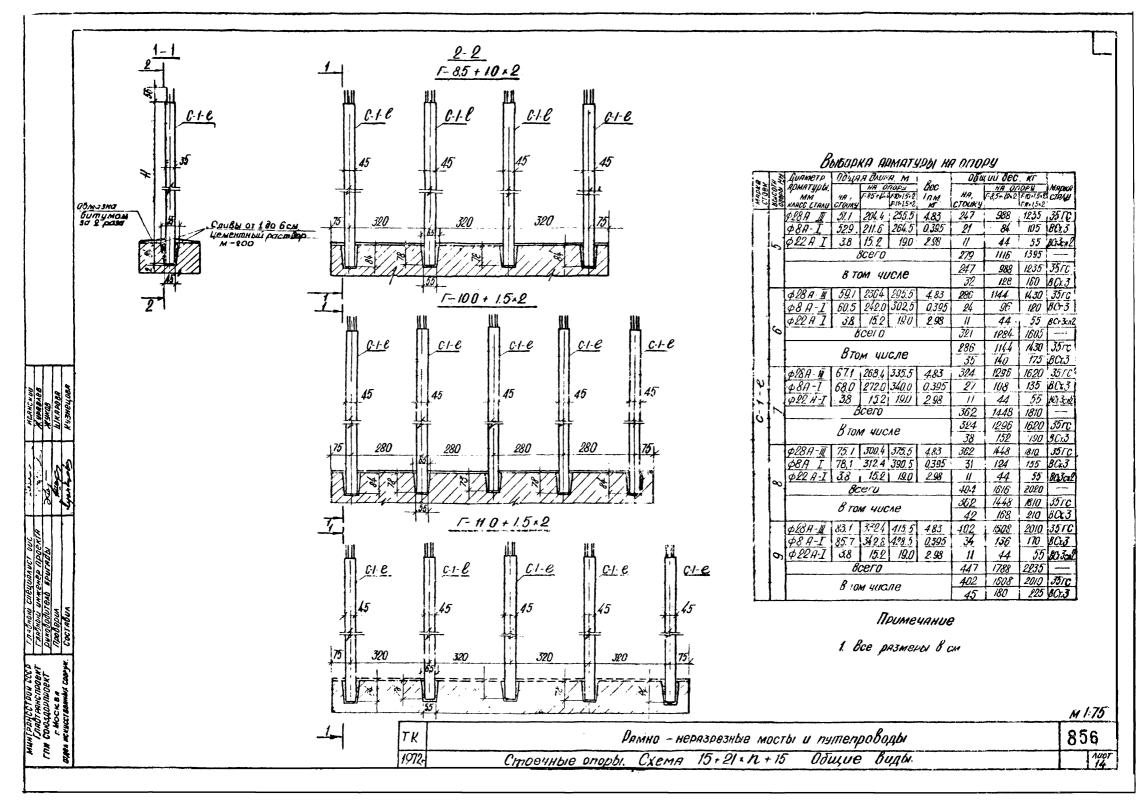
Сборные балки и плиты (объемы даны на 1 пролет)

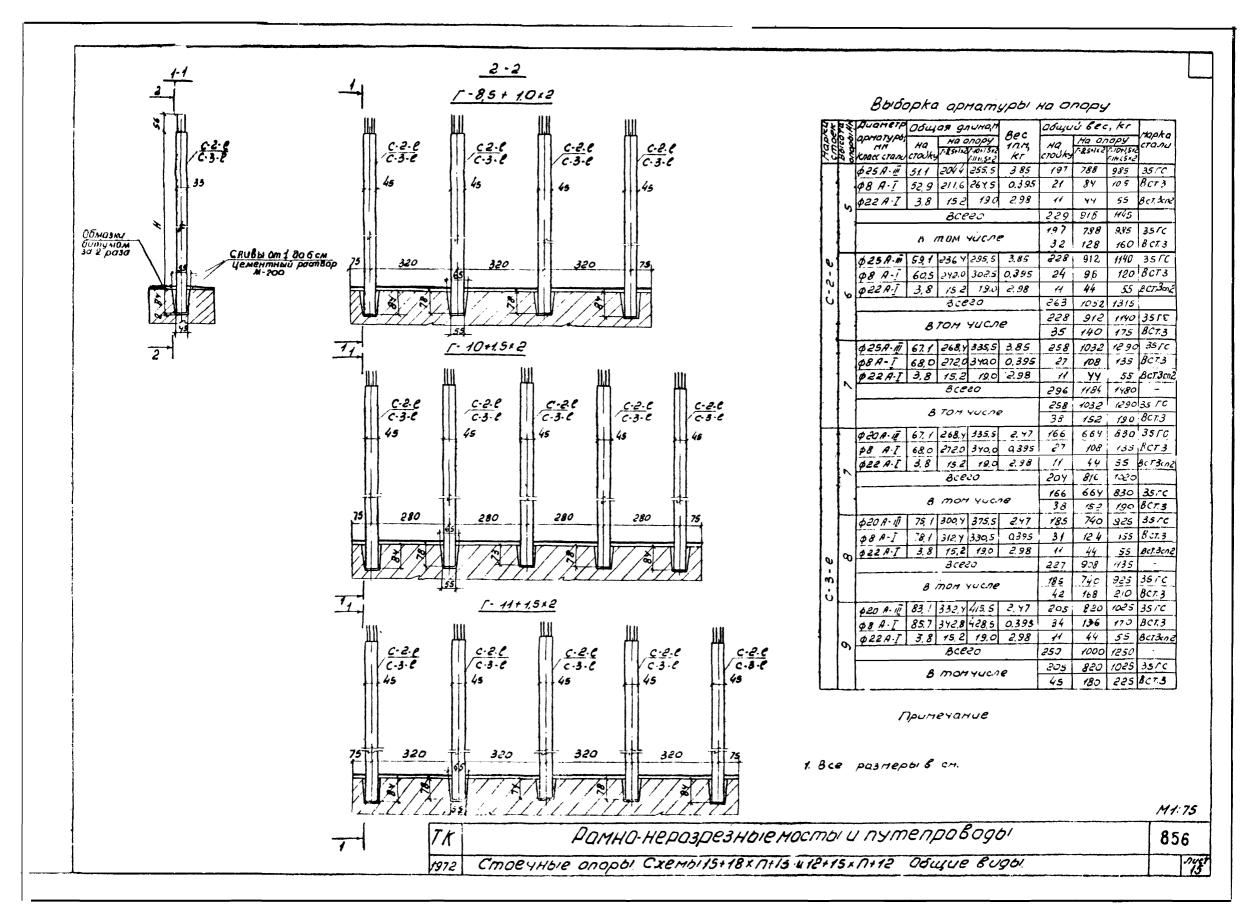
	W . 101		бахок	Ba. urr		<u>продетног</u> өке <u>зг</u> ана	га строен менты	UR	Сборны	'è nium	16/
CXEMB	ma.	Sabupumbi	i	W Ja	Бетон	r	арматурно	78	Бетон	Cmass ap	чатурная
3.6	Пролеты.		Марки	Количество.	300, Mapka Magan	KAGCCQ A- 直, r	KARCCA R-Ē, T	KARCCA A·I, T	300, Mapku	KA ACCA R. Ē, T	RAGCA R-I, T
		1-8.5-1.0-2		10	35.7	4.71	2.24	0.85	14.2	2.89	0.59
35	15	f 10 - 15 = 2	5 /	/2	42.8	5.65	2.69	1.02	17.4	3.53	0.72
1.0.1		r-11+1.5=2		13	46.4	6.12	2.91	1.11	19.0	3.85	0.78
15-21-0+		r.85.10.2		10	49.2	£70	3.09	1.15	19.4	3.97	0.81
,	21	1-10+15+2	5.2	12	59.0	10.44	3.71	1.38	23.8	4 85	0 99
		1-11-15-2		/3	64.0	11.31	4, 02	1.50	25.9	5, 29	1.08
		1-85-10-2		8	28.6	4.36	1.90	0.69	15.1	340	250
50	15	1.10-15-2	<i>5</i> ·3	10	35.7	5.45	2.37	0.86	19.5	4.37	0.65
1.1		1-11-1.5-2		10	35.7	5.45	2.57	0.86	195	4.37	0.65
15+18+17+15		5-8,5+10+2		8	33.4	5.72	2,23	0.81	17.6	3. 97	0.59
~?	18	V-10+1.5 = 2	5-4	10	41.8	7.15	2.79	1.01	22.7	5.10	0.76
		F:41+15=2		10	41.8	7./5	2,79	1.01	22.7	5.10	0.76
		r-8.5+1.0=2		8	17.0	2.44	1.27	0.55	13.0	2.79	0.45
2,	12	1-10+1.5=2	5 5	7	19.8	2.84	1.48	0.64	15.5	3.35	0.54
12 + 15 + 11 + 12		1-11-15-2		8	226	3.25	1,70	0 73	18,1	3.91	0.63
12+1		V-8.5+1.0=2		<i>5</i>	20.5	3.76	1.55	0.69	15.8	3 35	0.55
	15	r·10+1.5+2	B- 6	7	24.1	4.38	1.81	0.81	189	399	066
L		V-11+1.5+2		8	27.5	5.01	2,06	992	22.0	4.66	0.77

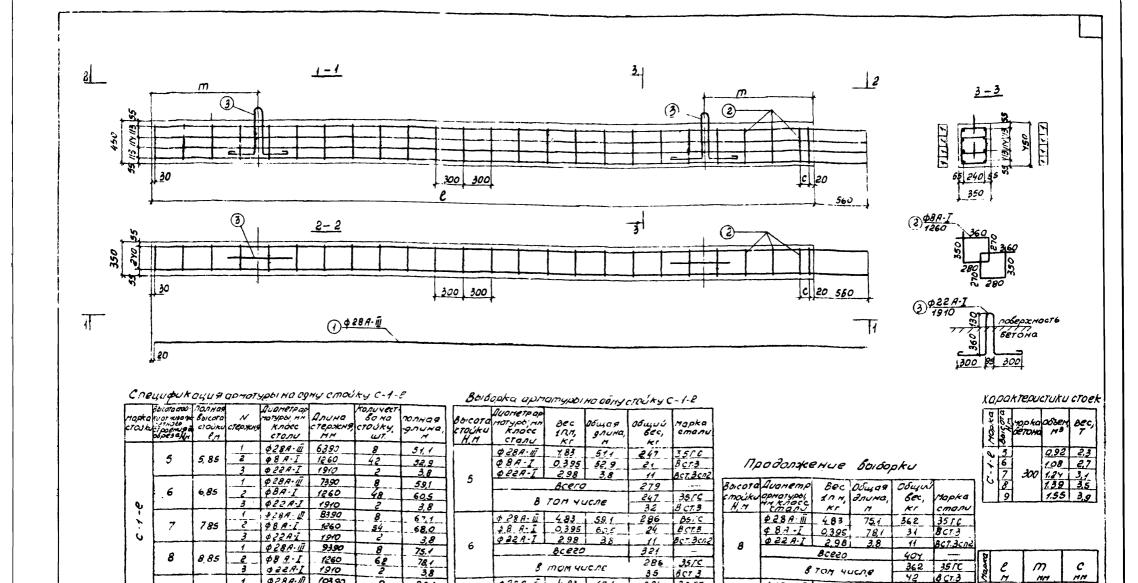

Монолитные части балок (объемы даны на сооружение)


Cxewbl	Kozuvecmbo pozemob, wr	[aðapumbi	Konuvecmbo ba. nox b noneperron ceremun, wr	Бетон марки	Сталь армитурная				
Cxe	Колическ пролетов,		KOLUWEL AOK B XOL B XOL	300 M ³	x10cca A- <u>II</u> T	RABECO R. II. T	Klacca R.Ī., r		
		r-8.5+1.0+2	10	25,4	6, 91	0.44	0, 25		
	3	1-10-15=2	12	3 U. 1	8.29	0,53	0,25		
5		1-11+1.5=2	13	32,4	9.11	0,51	0 25		
15+21=11+15		r-8.5+1.0 = 2	10	35, 8	10.38	C, 58	0.35		
27:	4	T-10+1.5 = 2	/2	42,4	12.43	0.69	0.35		
5.		r-11+1.5=2	/3	45.6	13.45	0 75	0.35		
`		1-8.5+1.0×2	10	46.2	/3.8	0,72	0,45		
	5	T-10+15 = 2	12	54,7	16.58	0.86	0.45		
		r-11+1.5 · 2	13	58.9	17.94	0,93	0, 45		
		r-8.5+1.0=2	8	20.1	5. 21	0.32	0.23		
	3	r-10+15+2	10	23.8	6, 52	0.41	0.23		
		r-11+1.5+2	10	27.5	6,52	041	0.37		
15+18+11+15		r-8.5+1.0=2	8	27.6	7 83	040	0.32		
2	4	r-10+1.5 × 2	10	32.6	9.78	0.50	0.32		
9/ +:	<u> </u>	1-11+1.5=2	10	37.7	9.78	0.50	0.50		
75		r-8.5 + 1.0 + 2	в	35.1	10.42	0.48	0.40		
	5	r-10+1.5=2	10	41,4	13.02	0.60	0.40		
		r-11+1.5=2	10	47.8	13.02	0.50	0.64		
		V-8.5 - 1.0 = 2	6	12.8	4,08	0.13	0.19		
	3	r-10+1.5 = 2	7	16.5	4.75	0.15	0.30		
	<u> </u>	T-11+1.5+2	8	15.8	5.44	0.18	0.19		
7.72		r-8.5+1.0×2	6	17.7	611	015	0.27		
0	4	r-10 + 1.5 + 2	1	22.7	7./3	0.18	0.41		
12, 15, 11 + 12	7	V-11+1.5=2	8	21.7	8.15	0.20	0.27		
		r-8.5+1.0=2	6	22.5	8.15	0.17	0.33		
	5	r-10+1.5 = 2	7	29 .0	9.5	0.20	052		
		r-11+1.5:2	8	27.7	10.88	0.22	0.33		


_											-4
TH	,	Рам	но- неразр	e3 H b I e M	ocmbl	u nyn	renp	080061	Many williams and with the season who have been been been been been been been be	856	
197	2	Сводная	<i>παδλυ</i> μα	pacroda	мате	puasob	no	пролетным	строениям	1 1/6"	7


	APPARTO E,			TAY HOMM BIE	484		HOXPOIT	NE NOCESK	EN YACTH			MOKESITHE	TPOTYAPOB	SAOK SAPS	EPNOTO OT	PAKDEAMS	ПЕРИЛА	
	radu	[ASAPHT	CTA	1.76	Оцинкован	841PABN 18AM		3AUMINAS	ACPASSIOSEI	ONN. MONPHIS	Genenio.	SETON	ACDANSTORAL	_	CTARS AP	". "TYPHAA		OROPHO
Crewi	Kasnvectoo		Пологовая уголковая м 16 С, кг	APMATYPHAA KARCCA A· II , KI	S: IMM,	44 H COON 5 = 3 CM 5 = 10 M M + 200, M 2 / M 3	(NOPON30 - 184 N 8 5 = 15 m ,	APMA:YPMAR CETKA \$3 YM,	3AYHTHOH CAOH S-4CM SETOH M-20Q M3	Acmanbro. BETON S.SCM.	SETEMBOE POSPHITHE SE OCH BETON ME 300, ME	M - 200 5 - 4 cm,	NORPHITAE .8 = 2cm ,	BETON M-300,	Kaneen 4-F	AUTOCA A-I,	TPY SU CTANDHU' BODOTAJO NPOBODNUE	MAPKA 004/10204
		1.85 1.0.2	1376	30	136	569/169	564	0.45	15./	403	32.2	4.8	111	<i>M</i> •			1	20/2
	3	1-10-1.5-2	1531	36	173	695/208	895	0.53	19.2	480	38.4	6 9	152		2.4			1 . 4
		1-11-15-2	1688	41	179	747/224	747	059	21 2	530	12.1	- · 7 1	167	16.5	2.04	0.41	1.70	29/2
		1-85-10-2	1376	30	136	800/24.0	800	0.63	22 8	570	45.6	6.9	157				 	20/ 21
7.75	4	1-10-1.5-2	1531	36	173	978/293	978	0.75	27.1	677	542	9,8	229	23 0	2.88	0.50		24/2
1.1	7	1-11+1.5=2	1688	41	179	1060/31.8	1060	0.83	30.0	799	500	10.0	235	220	2,00	0.58	2.36	26/2
+212		1-8.5 -10-2	1376	30	136	1030/309	1030	0.82	294	735	588	88	203				 	20/2
\$\$	5	1-10+15 = 2	1531	36	173	1260/37.8	1260	0.97	35.0	875	70.0	12.5	296	29.8	3.72	0.74	3.02	24/2
	•	1-11-15 x2	1688	41	179	1360/408	1360	1.07	38.7	967	77.4	12.8	30 3	23.0	J. (Ç	<i>0.17</i>	3.02	26/2
		1.85-1.0-2	137 6	30	136	530/159	530	0.42	152	379	30 4	4.6	105				 	16/1
	3	1-10-15-2	/531	36	- 173	660/198	660	0,50	18.1	451	36.2	58	161	15.4	1.92	0.38	1.61	20/2
		1-11-15-2	1588	41	179	700/21.0	700	0.55	20.0	500	100	65	153	70. 1	7.02	y. 0 D	1.07	20/2
15		1-85+1.0-2	1376	30	136	732/220	732	0.58	20.9	522	41.8	6.3	144					16/1
13 + 18 + N +	4	1-10-15-2	1531	36	173	910/27.3	910	0.68	248	620	19.6	91	222	21.1	2.64	0.53	2.17	20/2
8/.	7	1-11+15-2	1588	41	179	964/289	964	0.76	27,4	685	54.8	89	210			5.00	•	20/2
82		1-85+10-2	1375	30	136	930/279	930	0.74	26,6	664	53,2	8.0	183					16/1
	5	1-10+1.5 = 2	1531	36	173	1160/348	1160	0.87	31.6	790	63.2	12.0	282	26,9	3.35	0.67	2.74	20/2
		1-11+1.5-2	1688	41	179	1225 /36 8	1225	0,97	35.0	874	70,0	11 4	267	,-				20/2
		1 85-10-2	1376	30	/36	133 / 130	133	0.34	123	308	24.6	3.7	85				1	12/1
	3	1-10+1.5-2	1531	36	/73	530/159	530	0.40	14.7	367	294	5.3	124	12.5	J.56	0.31	1.32	19/19
		1-11-15-2	1688	41	179	584 /17.5	584	045	162	406	324	5.9	139			•		16/16
2/		1-85-1.0-2	1316	30	136	600/18.0	600	0.48	17.1	427	34.2	5.1	118					12/12
, ".	4	1-10-15-2	/53/	36	173	735/221	735	0.56	20,3	508	10,6	7.3	172	17,3	2,16	0,13	1.79	14/1
01810		1-11-1.5-2	1688	41	179	810/29,3	810	0.62	22.5	562	45.0	8./	192					16/16
2/		1-85-10-2	1376	30	136	765/230	785	0.61	21.8	545	43.6	67	151					12/12
	5	1-10-1.5 = 2	/531	36	173	937/28/	937	0.72	26.0	649	570	9.4	219	22.1	2.76	0,55	2 27	14/19
į		1-11+1.5×2	1688	91	179	1031 /309	1031	0,79	28.7	718	57.4	10,4	246		, , , ,			16/16


Рамно-неразрезные мосты и путепроводы 7К Рамко-неризрезные мосты и путепроводы. 1972 Сводная таблица расхода материалов по проезжей части, тротчарам, перилам и опарным частям.



228.9.1 4.83 671

φ 8 A - I 0,395 68.0 φ 22 A - I 298 3.8

BCERO

8 TOM YUCKE

\$28 A. 17

\$8 A-I

\$22A.1

9,8

10390

1260

1910

8

68

831

85,7

3.8

ТК Рамно-нерозрезные мосты и путепроводы.	856
1972 C MOUKU C-1-E. CXEMA 15+21×11+15. April 1906	

9

35/C

BCT.3cne

BC7.3

324

27

11

362

324 35/C 38 8cr.3

42

402

34

11

\$28A-# 4.83 83.1

\$ 8 A - 1 0.395 85 \$ 22 A - 1 2.98 3.8

BCEZO

6 TON YUCAE

18 CT.3

35/C

B C7.3

402 35 FC 45 8 CF.3

BCT.3CAR

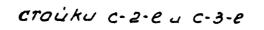
MM

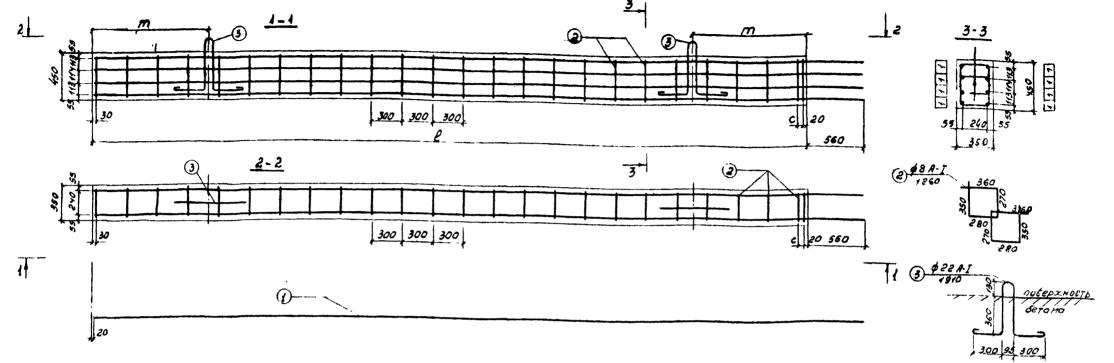
1200

100

1600

0 8.85 1800 3.85 2000


5,85


MM

100

200

0

PRELUCTURALUS OPHOTY PEI HO OBHY CHOCKY

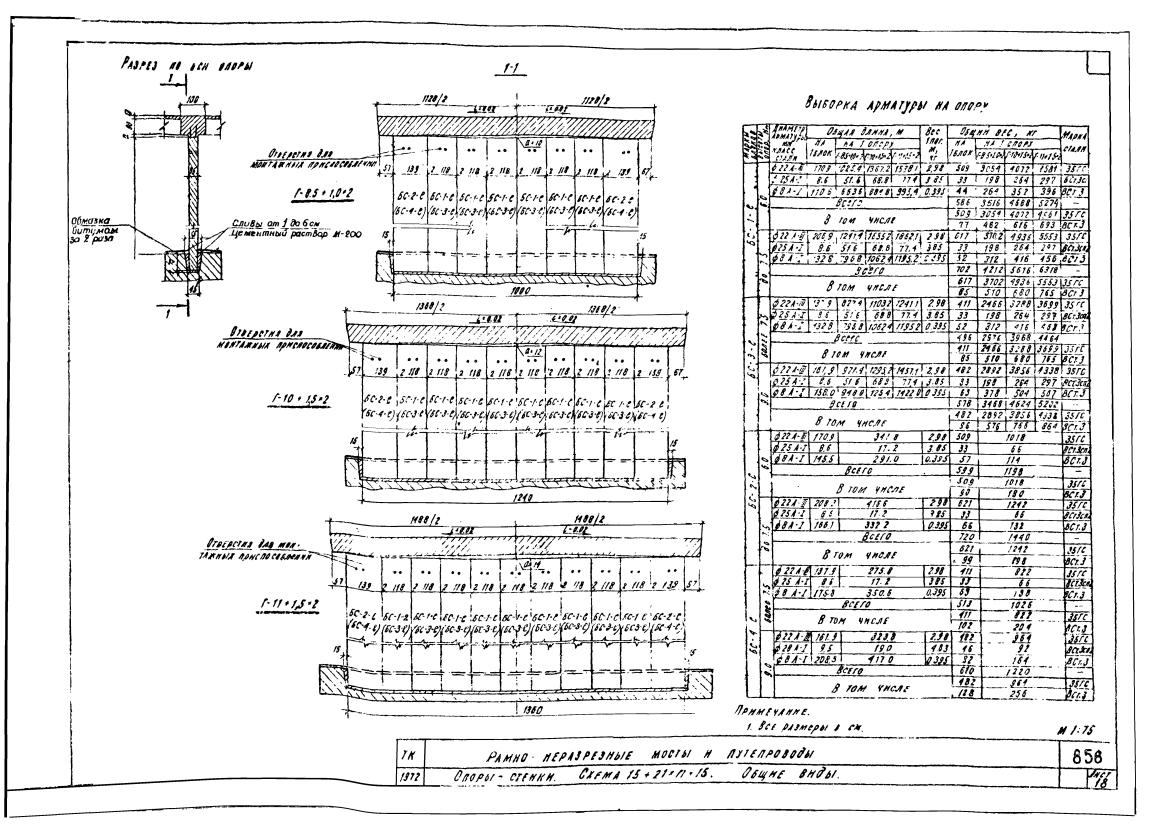
ngoka	TO OT NU BE	BOICOTA	N	Quartep ap rarypbi, no	DAUNA	Romuyeet.	полная
TOUKU	TOO RETHOND CIROPHUR 90 PAPENA NY	CTOUKU	CTEPLYCHS	KNOCC CTONU	CTEDNENS	CTOURY	gnung
			1	\$ 23 A - ii	6390	8	51.1
	5	5,85	2	48 N.I	1260	YZ	52.9
٥.			3	655 U-I	1910	2	3.8
6			1	\$ 85 A . B	7390	8	58/
r)	€	685	ر م	\$8 A-J	1260		60,5
Ċ			3	\$55B.I	1910	- 6	3.8
				\$ 25 A · 4	8390	8	67.1
	207	7.85	و	98 A-1	1560	54	68.0
			3	622A.7	1910	وع	3.8
	Sonee	200		620A.	8390	8	621
		2.85	2	\$8 A.T	1260	54	68,0
Ò			3	\$22 A-1	1910	9	3.8
3		0.00		620 A - 13	9390	8	75.1
ن	8	8.85,	2	08 A-I	1560	62	78,1
			3	0554-I	1910	وح	3.8
	و	000		\$20A-W	10390	8	83.1
	y	9.85	5	Ø8 A·I	1260	68	857
			3	Ø22A-1	19111	2	18

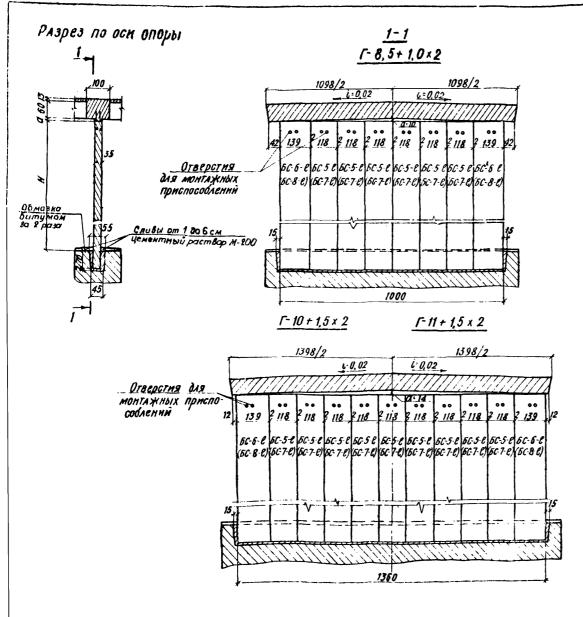
BbiGopka opratypbi na odny ctouky c. 2-8

•	Avanetp op-			T	T T
o cora	MOTY DOU, MM	Bec	06409	06400	Mopko
POUNU	KAOCC	1/2/1,	BAUND,	Bec.	chanu
KH	Cronu	Kr	1 77	Kr	1
	\$ 25 A. F	3.85	361	197	35 rc
	0 8 A.I	0.395	52.9	21	BCT.3
5	288 A.I	2.98	3, 8	. 11	BCEBCAR
9		BCEED		229	_
		• • • • • • • • • • • • • • • • • • • •		197	3516
		10H YUC	באב	32	BCT3
	\$ 25 A-1	3, 85	59.1	228	35 FC
	\$ 8 A.I	0.395	60.5	24	BCT.3
6	022A.I	2.98	3.8	11	8 c7.3 cn2
•		Bceeo		263	
				228	35 rc
	, 8	rom yu	cne	32	807.3
	\$ 25 A. M	3.85	67.1	258	35 rc
	\$89-1	9395	68.0	27	BCT. 3
207	\$ 22 A-1	255	38	11	Ber. Benz
		eceto	2.96		
		. K.		258	35/C
	A.	MOH YUC	カピ	30	B CT. 3

Bbidopka apmotyphi no odny crowky C-3-8

00.0			12. 007.9	CHOWNEY	3.6
SUCOTA TOUKU KM	AURMETPOP Marypor, MM KNACC CTANU	Bec IRM,	DÓLLOS SAURO,	odiyur bec,	Mapk a
	\$ 20 A-11	2,47	67.1	166	35/C
Garee	OB A.I	9335	680	27	8CT.3
Janes 1	\$ 82 A-I	298	3.8	11	BC7.3502
•		BCESO		804	-
		TON YU	FAR	166	35 /C
			1.00	38	BCT.3
	\$ 20 A-1	2,47	75.1	185	35 /C
	\$ 8 A-I	0395	781	31	Ber 3
8	\$ 22 A-I	298	33	11	BCT3cn2
•		BCEED	227	}	
	В	70H 40	185	35 16	
	\$20 A. IT	2 47	83.1	42	BCT.3
				205	35 /6
	4 8 A-1	0.395	85.7	34	B CT.3
9	\$ 22 R.I	2.98	38	11	BCT3CA2
	 	Breeo		250	
		BTON	YUENE	205	35/C
	L			Y5	BCT3


Xapoktepuctuku ctoek


HOPKA	00/cora	toata Serona	ODBEN, NB	sec.
0.00	5 6 7	200	0.92 1.08 1.84	2,3
3.6.	7	300	1.2Y 1.39	3.5
٢	9		155	3.9

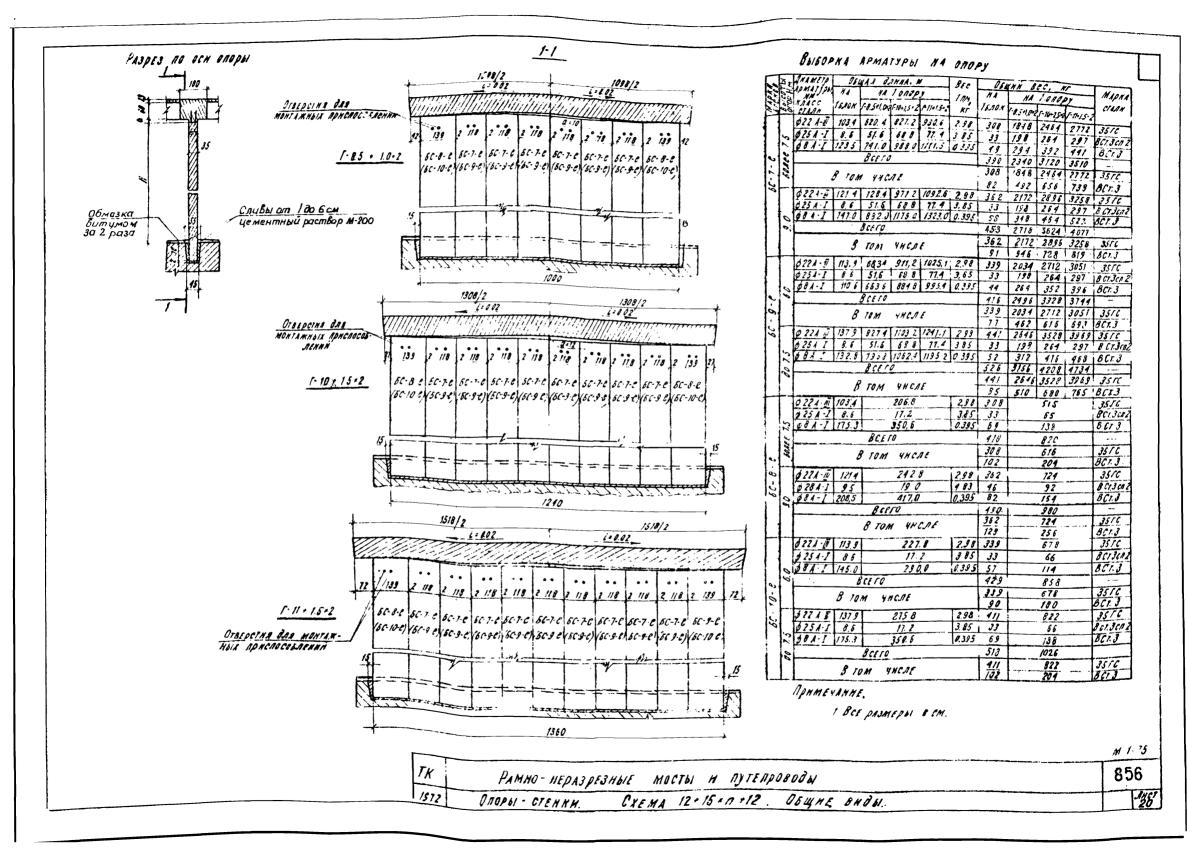
MODKO	Ĉ M	ח ממ	C
9-	5.85	1200	100
ď	6.35	1400	200
5	7,85	1600	0
ġ.	7.85	1600	0
3	8.85	1200	100
0	9.85	2000	200

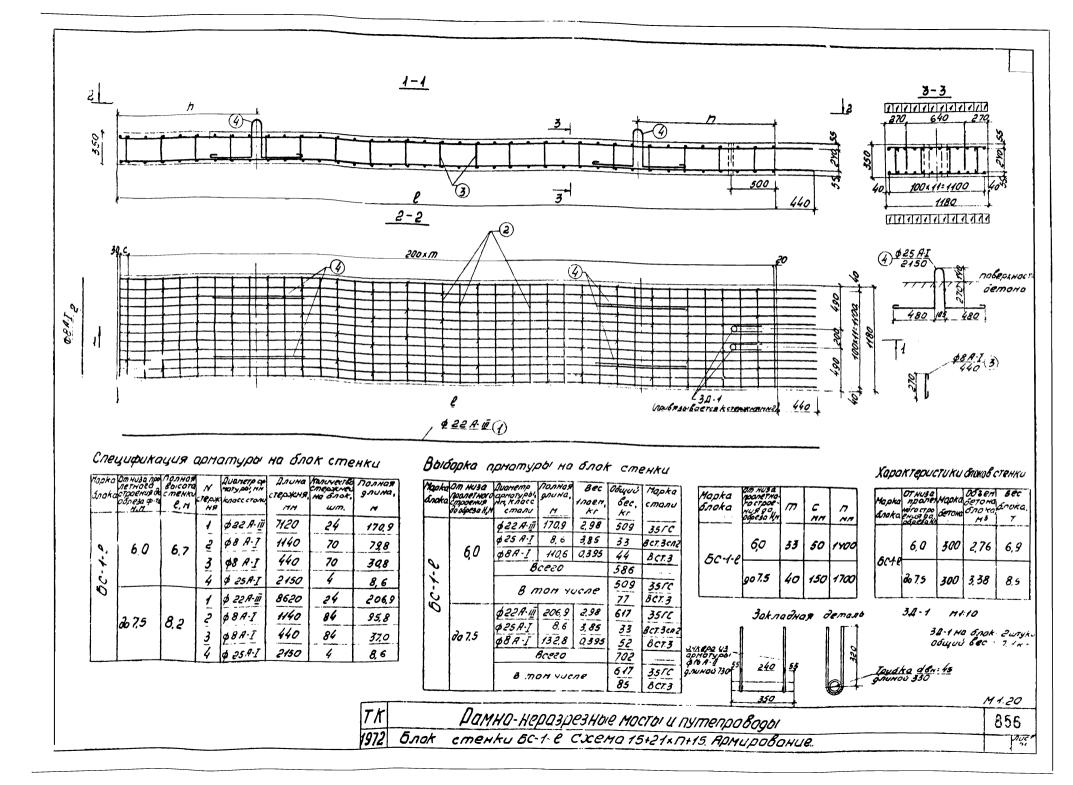
M 1:20

TK	Panho-HEPA3PE3Hbie Mocrbi u nymenpabodbi.
1972	C MOUKU C-2-E u C-3-E. CXEMBI 12+15 × N+12 U 15+18× N+15 ApMUPOBOHUE

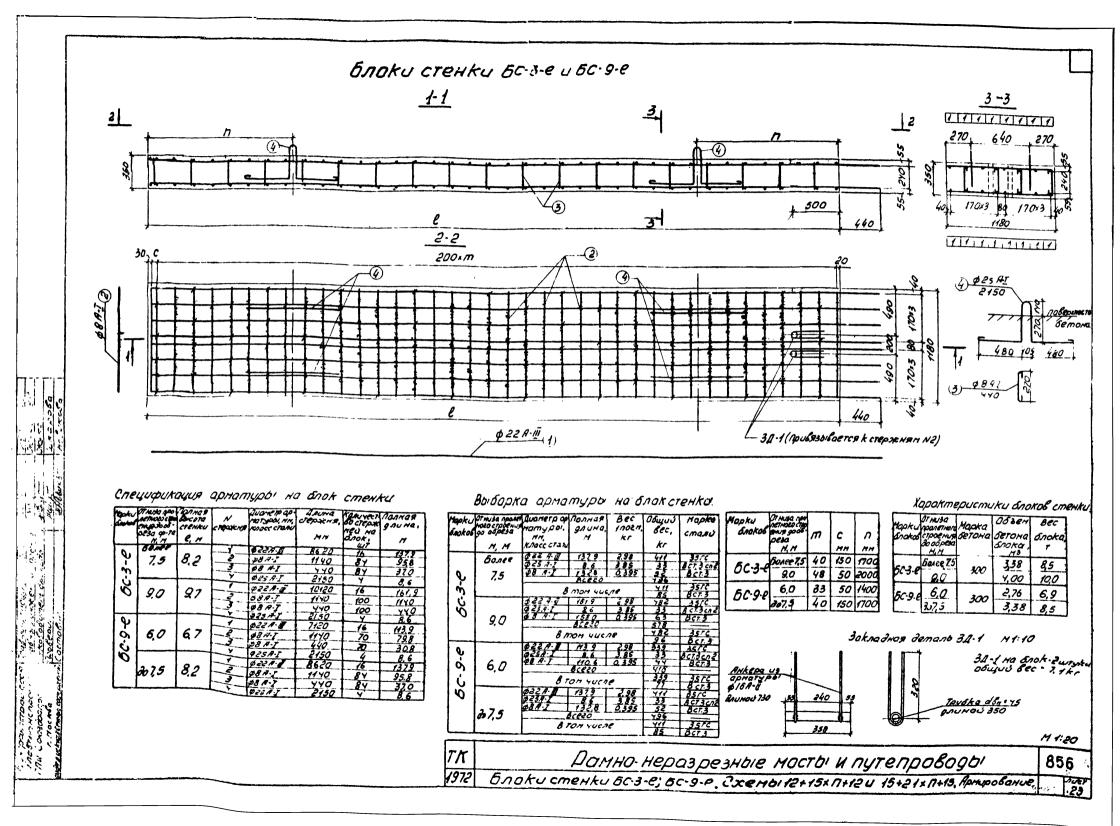
TK

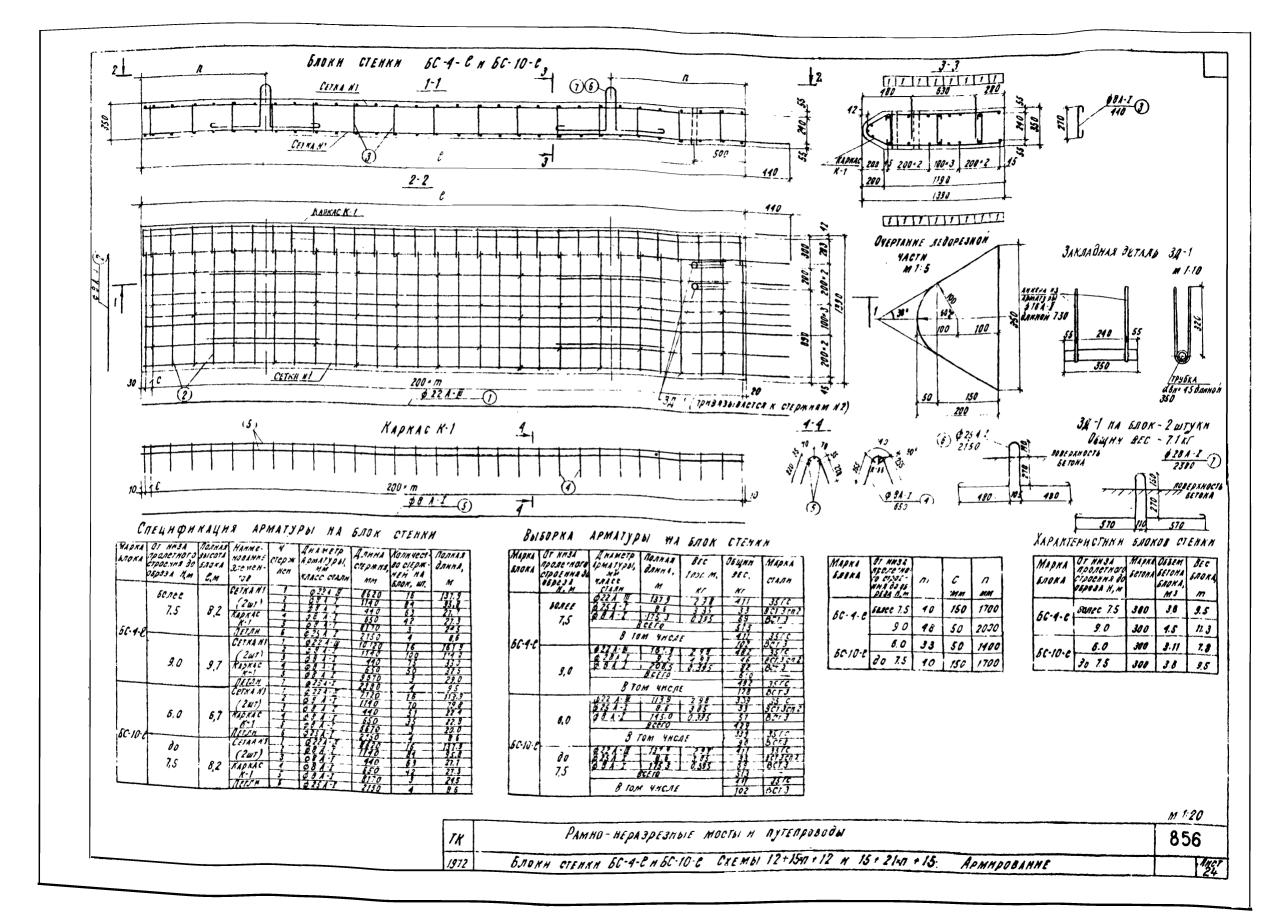
Выборка арматуры на опору

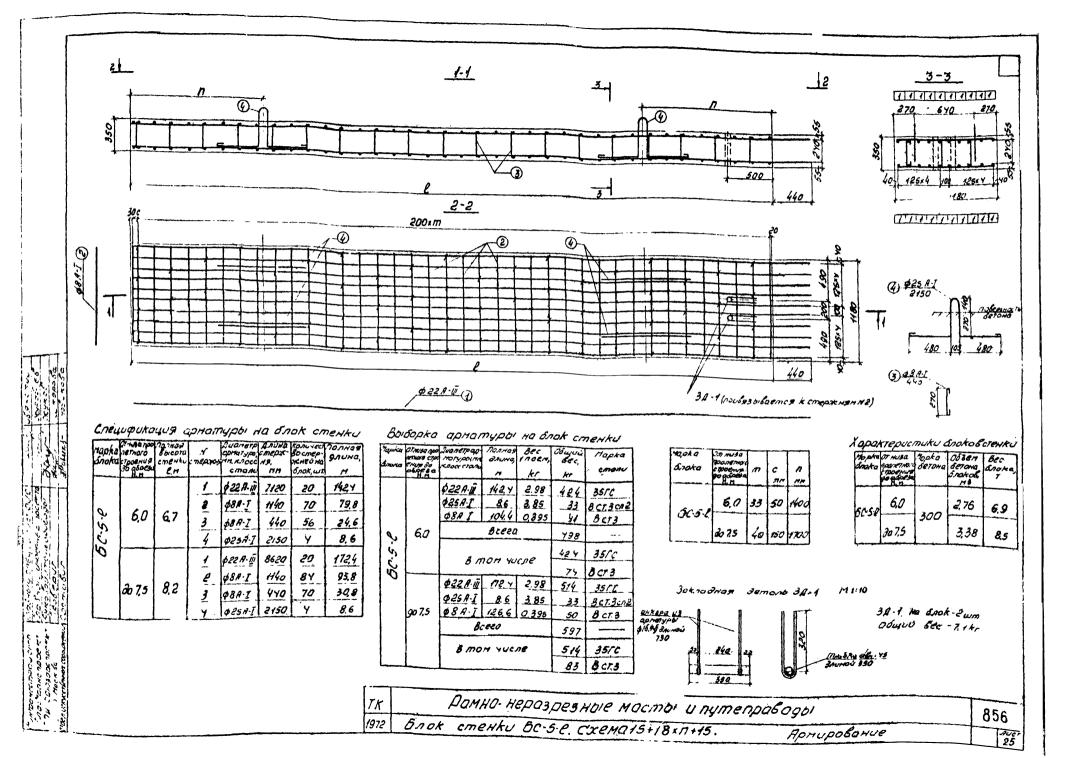

		77.12.44		177	7,	_	0110			·
58	- 2	AHAMETP ADMATYPH		AR OF	MHA M	Bec	004		BC, KI	MAPKA
òδ	30	MARC	HA 16AOK	HA	TOTOPY	Inor M	MA	MA	TOTOPY	CTAAN
Ľ,	ODIGE	GTAAM		85-10-2		Kr.	10100	F8,5+1,0x2	1 0 11 0 py 1-10+1.5x2 1-11+1.5x2	
		622 A · III	1424	854.4	12816	2,98	424	2544	3816	35 1C
		425A-I	8,6	51,6	77,4	3.85	33	198	297	BCr3cn
1		\$8A-I	104,4		939,6	0.395	41	246	369	BCT. 3
0	Ô,			Beero			498	2988	4482	T =
5-1			B TON	4 U	CAE		424	2544	3816	35/C
.5	_					T · · · ·	74	444	6 6 6	BCT. 3
-99		\$22A-11		•	1551,6	2,98	514	3084	4626	35 rc
7		\$25A-I	8,6		77,4	3.85	33	198	297	BCT.3cm
	5	\$8 A I	126,6	7.5 9,6	1139,4	0,395	50	300	450	BCT 3
	_			BCEI	0			3582	5373	
	90		B ro	A1 U	16 AE			3084	4626	35 FC
				, ,,	70710	·	83	498	747	BCT. 3
		\$22 A II	103,4	6204	930,6	2 28	308	1848	2772	35 FC
1	5	\$25A.I	8.6	51.6	77.4	2,98 3,85 0,395	33	198	297	BCT.3cn.
		\$8A.I	123.5			10,393	49	294	441	BCT 3
	ээкор			BCEI	<u>u</u>		390	2340	3510	1.5.
7-6	70		B TO	M	MCAE		308	1848	2772	3516
	_	7				T	82	492	738	35/C
50		022 A - 1	121, 4	728,4		2.98	362	2172	3258	807.3cm
"		\$25A-I	8,6	51.6	77.4	3.85	33	198	297	BCT.3
	9.0	\$81-I	147,0	882.0	1323.0	0,395	58	348	522	001.5
				BCE			362	27/8	4077 3258	35/C
			B TO	7M 4	HCAE		91	546	819	BCT 3
-	-	100 4 5	142.4	·	2848	2.98	425	0.0	850	35 /C
		\$22 A-III \$25 A-I	8.5		17, 2	3.85	33		οο	BGr3cn2
	6.0	08A I	147.2		294,4	0.395	58		116	BCI 3
		2072	17/12	Bce		10,000	516		032	-
0							425		850	35 TC
0			Bre	OM	YHGNE		91		182	BCT 3
٦	Н	\$22.A-H	172.4		344.8	2,98	514		028	35/C
-39		025AI	8,6		17, 2	3.85	33	1	56	BCT 3CM
Ι`		\$8 A-I	178,4	I	356.8	0.395	70	Ι	140	8CT 3
1	1.			BCE	ro		617	1	234	<u> </u>
l	90		8 1	0.44	114010		514	1	028	35/C
1			D /	<i>U M</i>	числе		103	L	206	BCT 3
Γ		022 A-III	103,4		206.8	2,98	308	T	616	351C
1	<u>ر</u>	\$25A.I	8.6		17, 2	3.85	33	I	66	BCT 3cm
1	ec 7.	\$ 3A I	175.3		350.6	0,395	69	1	38	BCT 3
0				BCE	20		410		20	
		B rom ynche					308		516	35 FC
.8-Jg	8						102	12	204	B GT 3
130	1	022A-W	121,4		242.8	2.98	362	1 7	724	35 TC
`		\$28A-I	9,5		19,0	4,83	46		92	BO 3cm2
			208.5	4	117.0	0.395	82		64	BCT 3
ł		·		BC	20		490	9	80	_
	0	1								
	9.		В		HHEAR		362		24	35 FC 8 CT 3

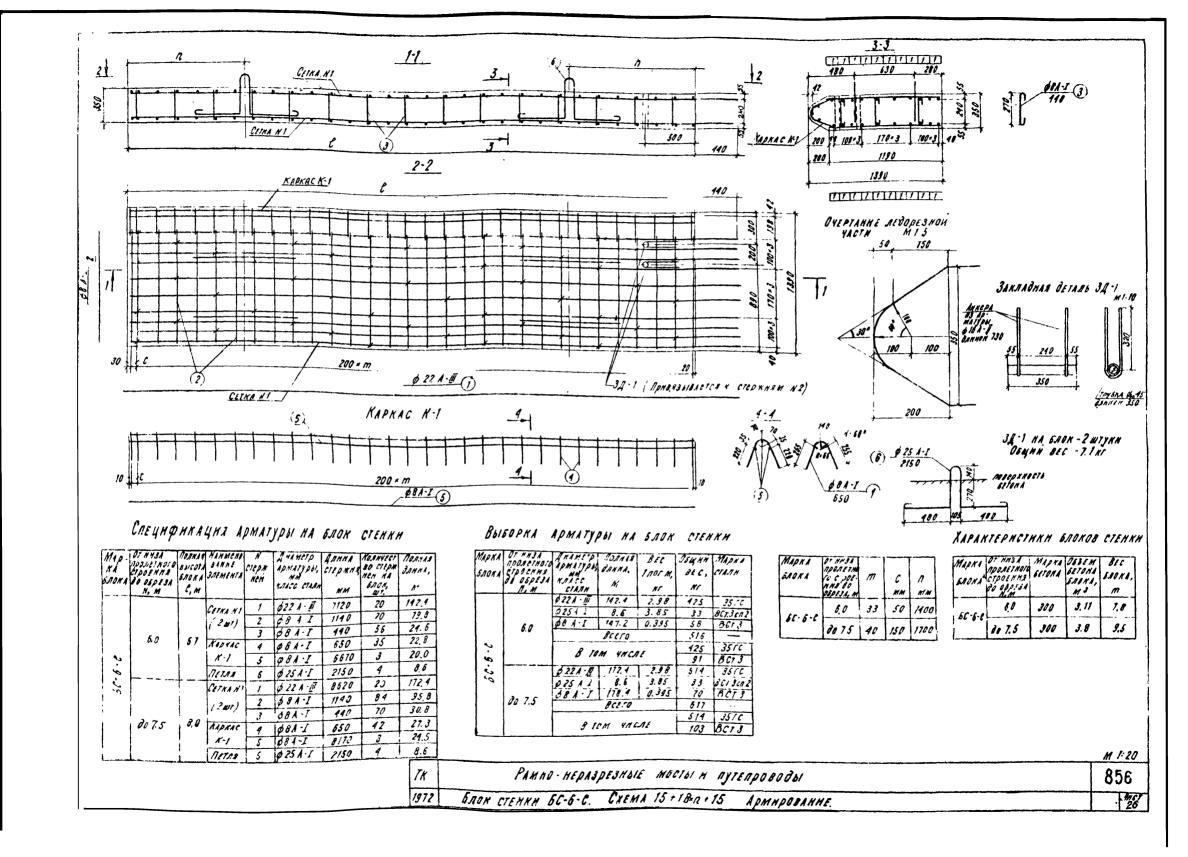

Примечание.

1. Все размеры в см


M 1 75
856
Anct


Рамно-неразрезные мосты и путепроводы Опоры-стенки. Схема 15-18×П+15. Общие виды.







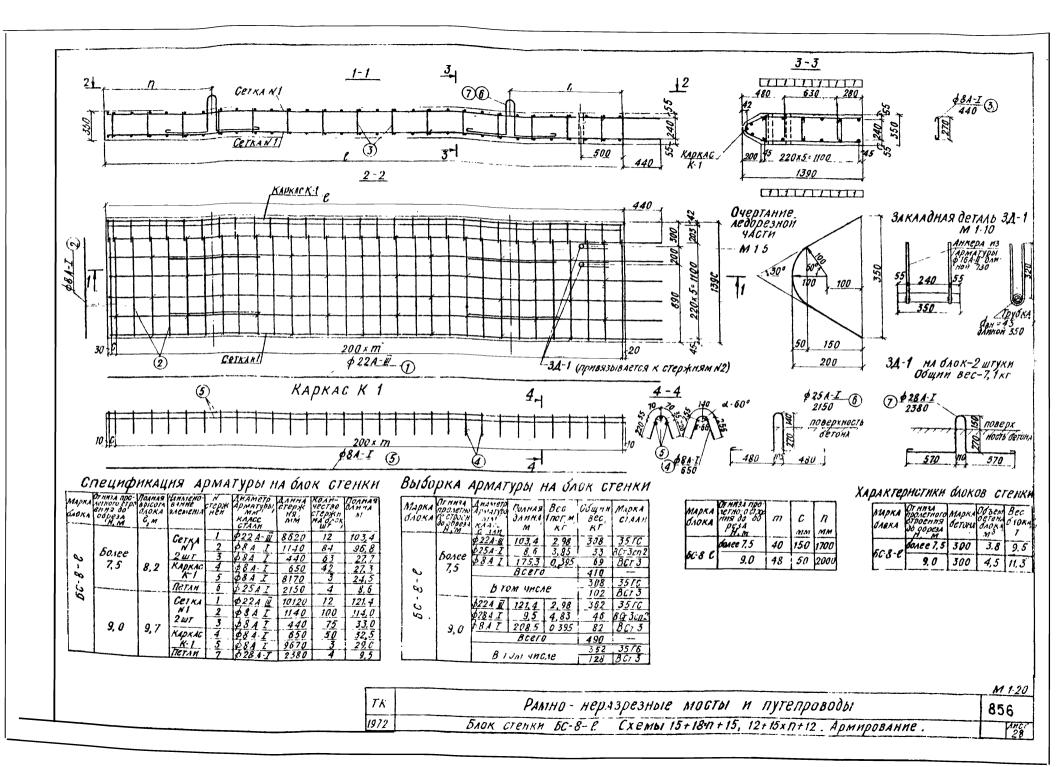
PROHUMBURHUR ADMATUDAL HA KIA

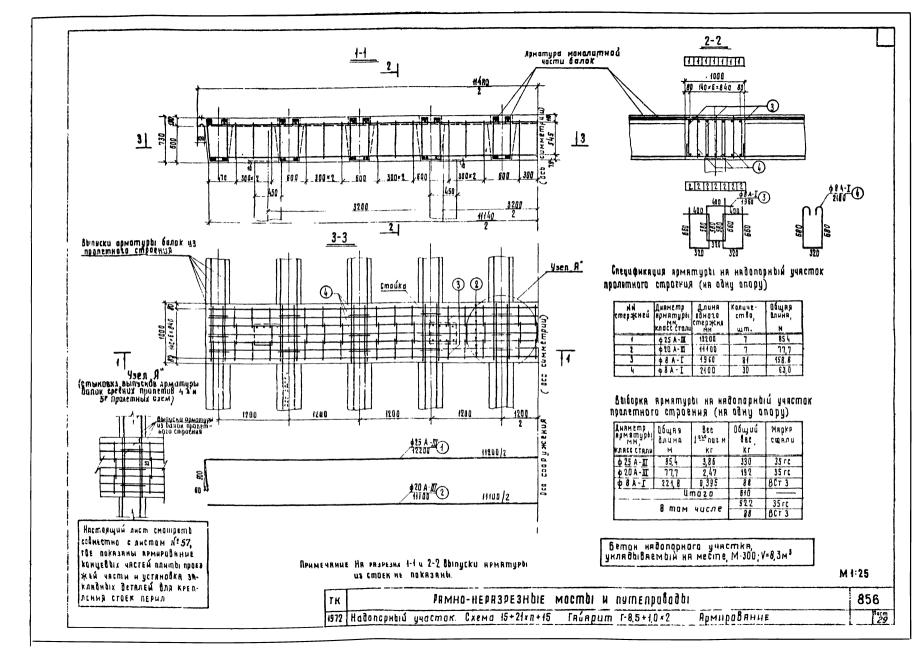
пирка	OT MNSA 1900 ACTHORD CTPOCHMS ON OGPESA	MOAMAR BWCOTA CTEMAR LM	/*	Дмаметр арма Гуры, ым, КЛАСС СТАЛН	Creakus	KOAMYECT- BO GTEPH- MEN MA GURA MIT:	Pannas Danna, M
	Боле е 7,5	8,2	1	\$ 22 A - W	8620	12	103,4
			2	\$8A-I	1140	84	95,8
			3	\$8A-I	440	63	27,7
- 7			4	\$25A-I	2150	4	8.6
BC	9,0	9,7	1	\$22 A · III	10120	12	121,4
			2	\$81-I	1140	100	114,0
			3	\$8A-I	440	75	33.0
			4	\$25A-I	2150	4	8,6

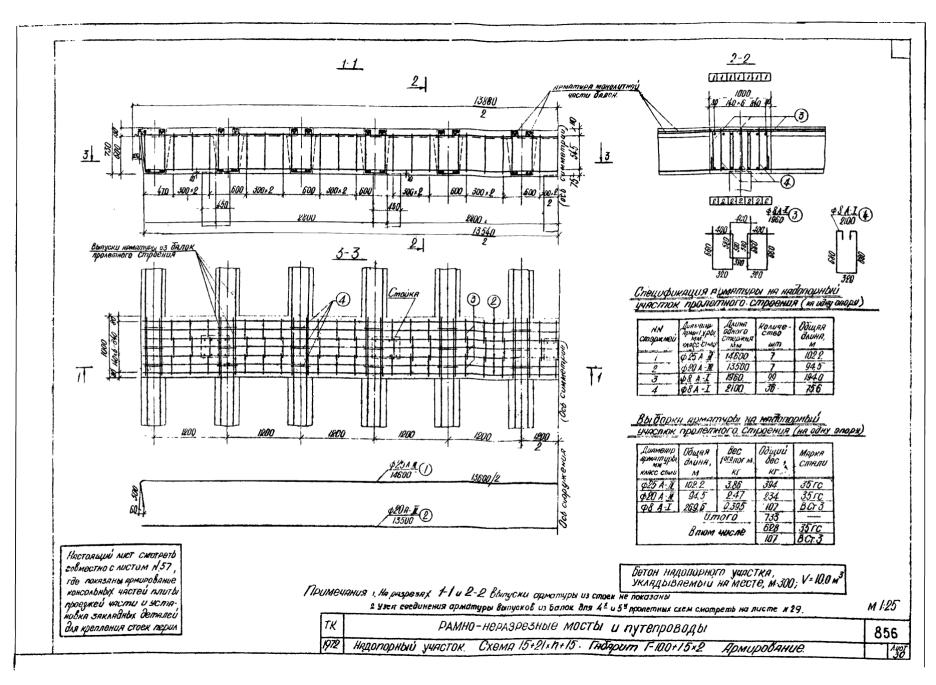
BUBOPKA APMATYPU HA BAOK CTEHKH

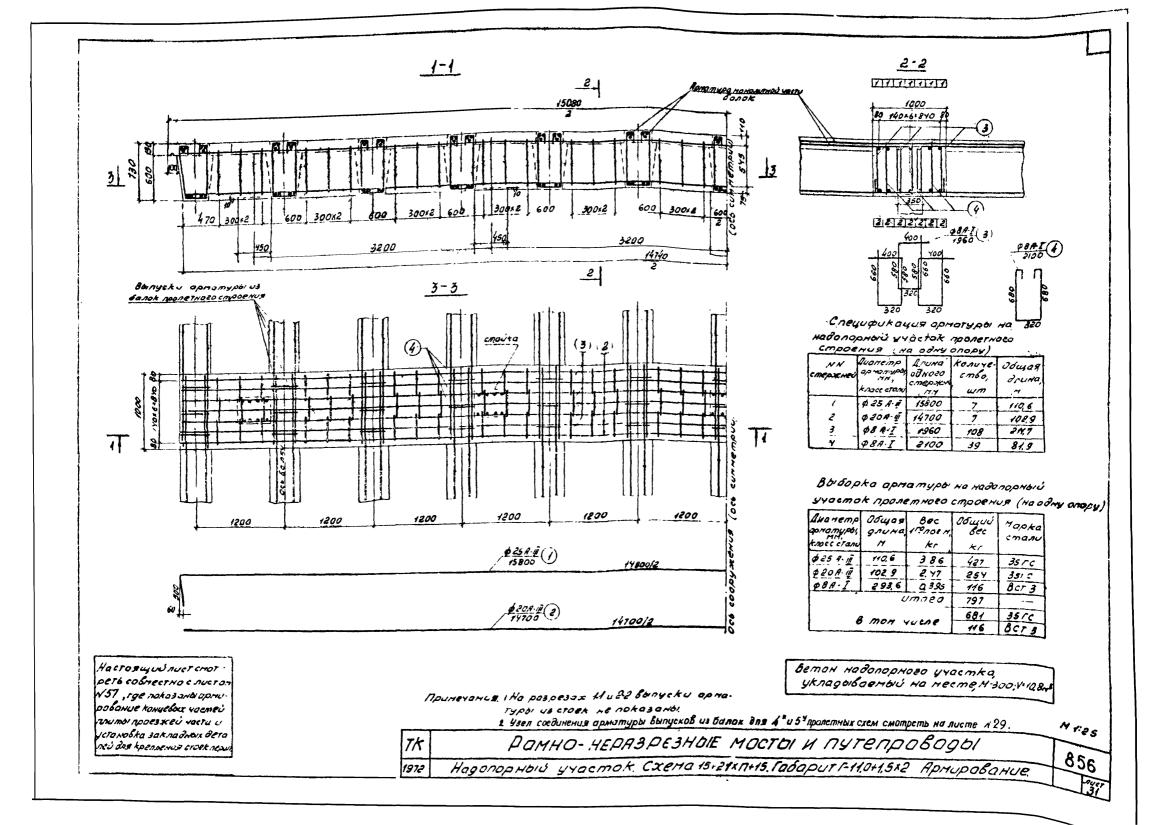
	,	, .	,	-		
Марка Олока	OT HN3A NDO- AETHOTO ETPO PHIES DO OBPE- 3A M. M	Днамегр Армагуры, мм "Класс Стали	Полпая длина, м	Bec 1 nor m, Kr	Odujni BEC, Kl	МАРКА СГАЛИ
		φ22 A· <u>Ē</u>	103,4	2,98	308	35 TC
	Более	\$25 A-I	8.6	3.85	33	BCr 3cn2
	7.5	\$8 A.I	123,5	0,395	49	BCT 3
	,,-		Beer	390		
0		4 7	OM YHC	308	35 TC	
7		01	UMI 47/C	82	BCT 3	
-29	9,0	\$221-11	121.4	2,98	362	35 TC
9		\$25A-I	8,6	3.85	35	BCr 3cn2
		\$8 A.I	147.0	0,395	58	ВСт. З
			Bcero	453		
		0 -	M YHC	362	35/C	
		1 014	IM YNU.	91	BCT 3	

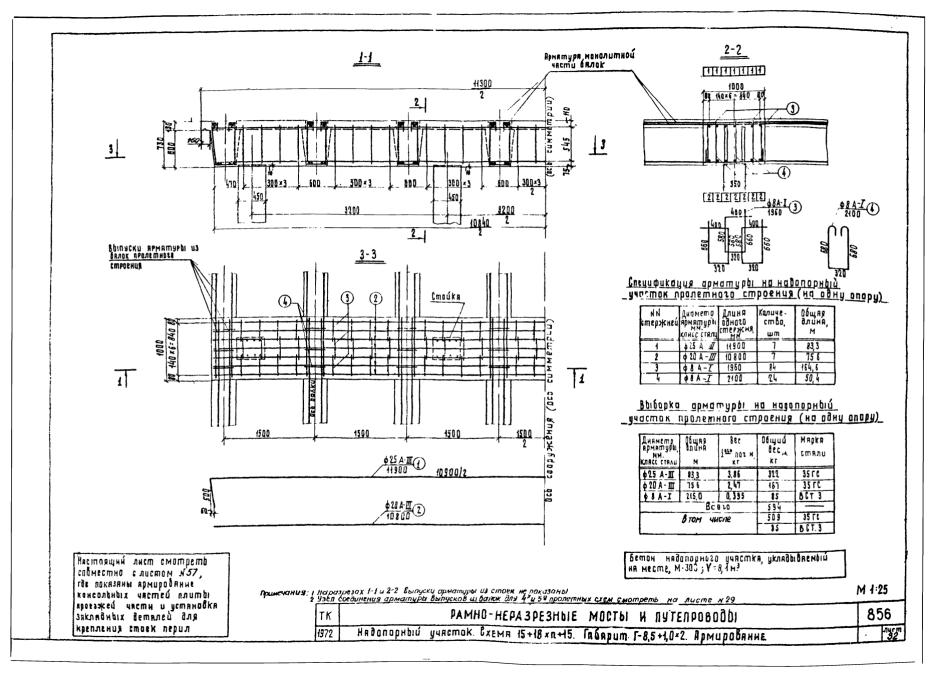
YADANTOOUCTURN HANKDE CTEHKH

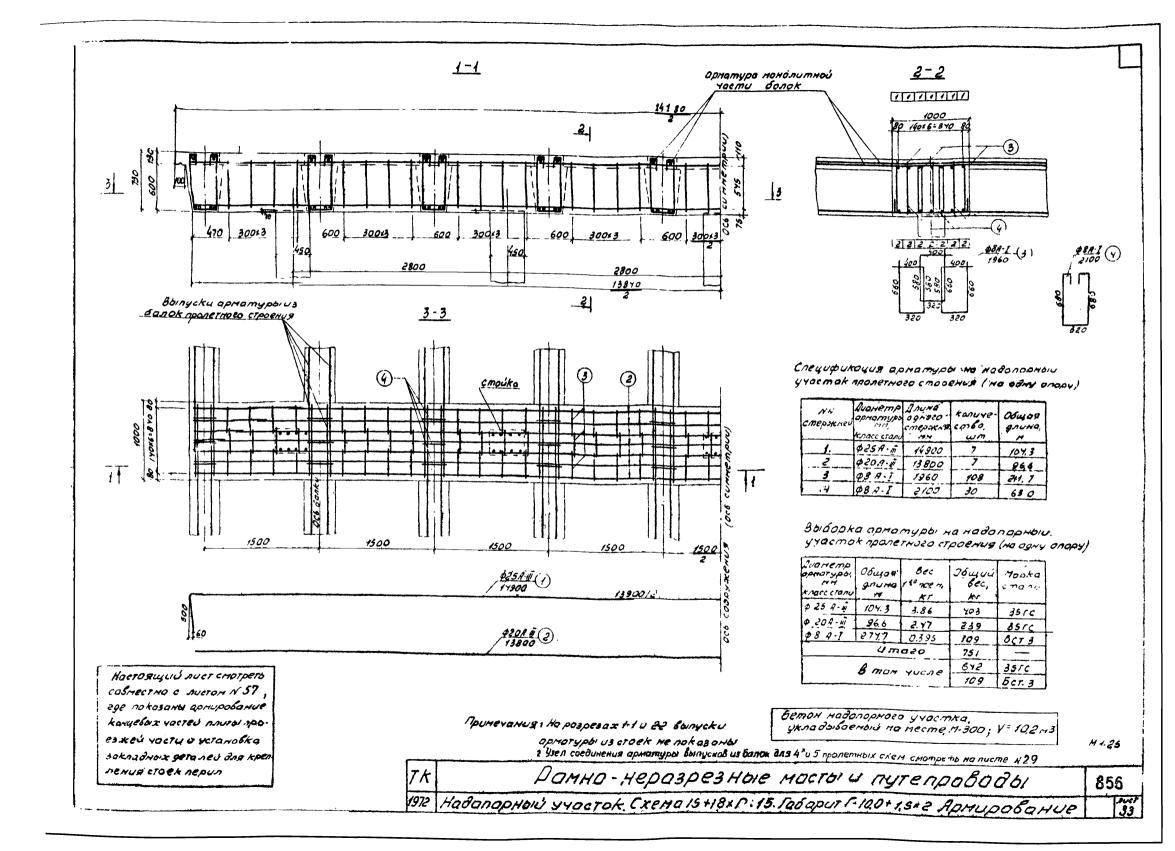

					марактері	TUINKN	UNUT	WO U	16/11
TAPKA NOKA	OT MM3.A TIPOAETHOR CTPOEMM OD ODPESM M.M.	m	C	п	МАРКА блока	OT MM3A ADDALETHOR ADDENNS DO DODESA M. M	Марка бетона	ON BEM DETUNA DAONOB M	Вес блоков, Т
5C-7-l	Более 7.5	40	150	1700	56-7-8	Более 7,5	300	3,38	8,5
	9,0	48	50	2000		9,0		4.0	10.0

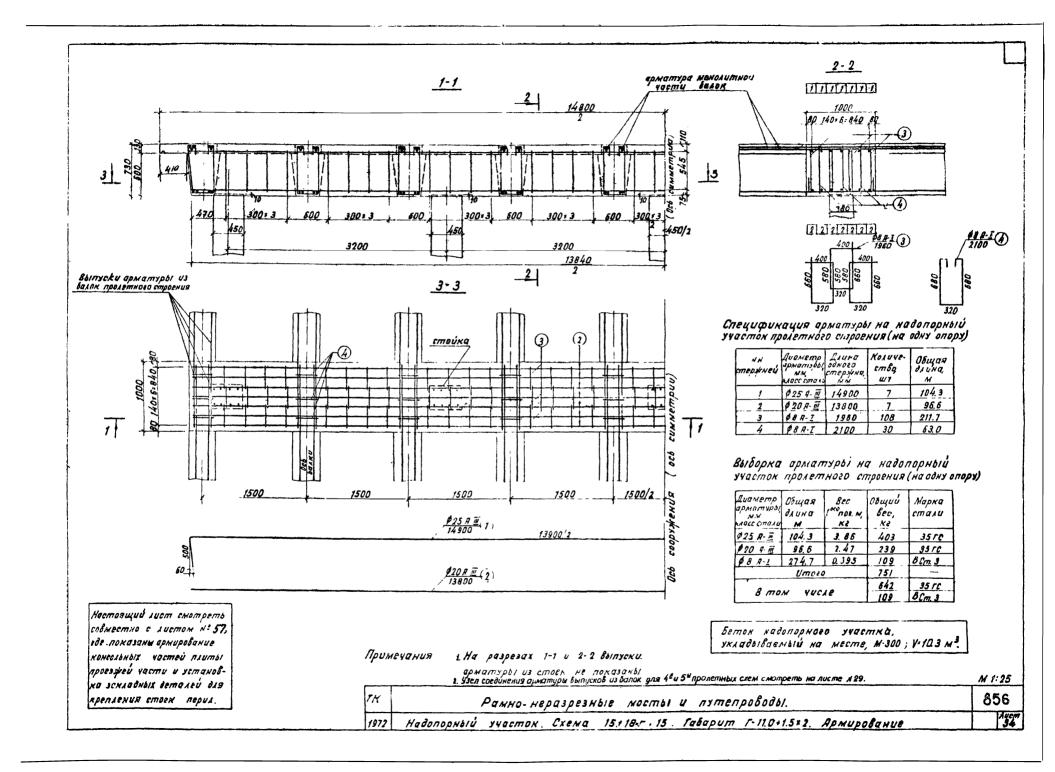

BAKNADHAR DETAND 31-1 (M 1:10)

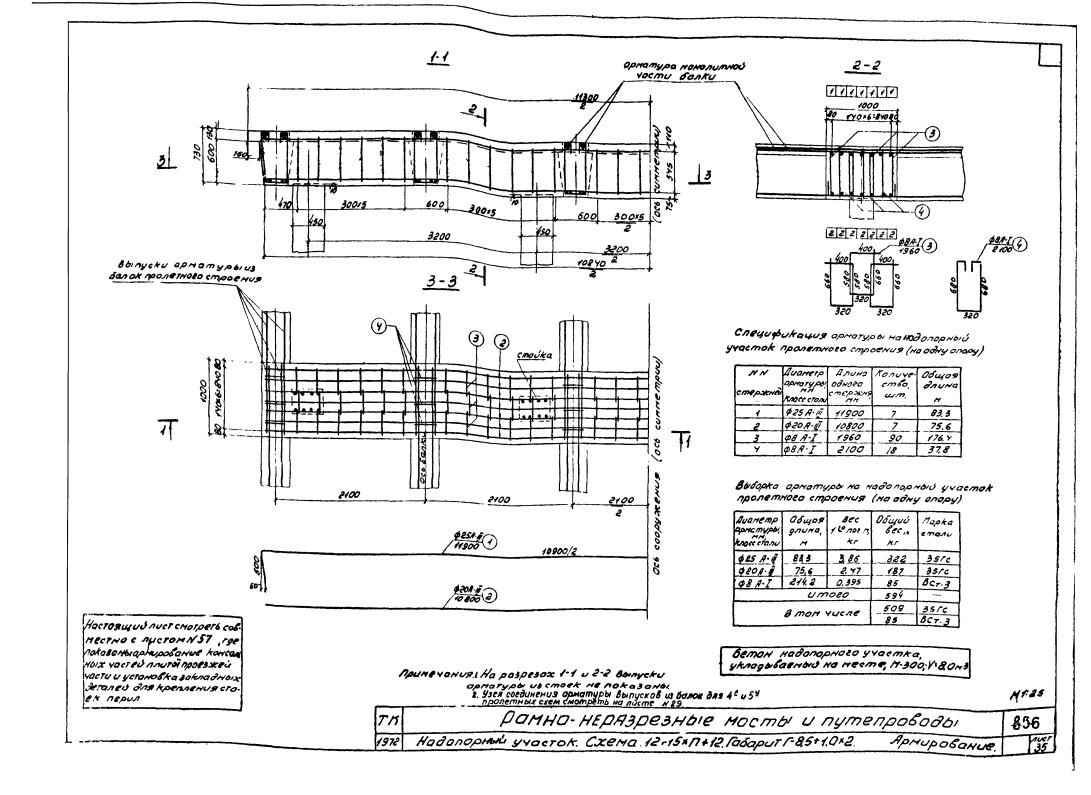

3A-1 HA GAOK -2 WTYKH OGWHN BEG - 7,1 KT

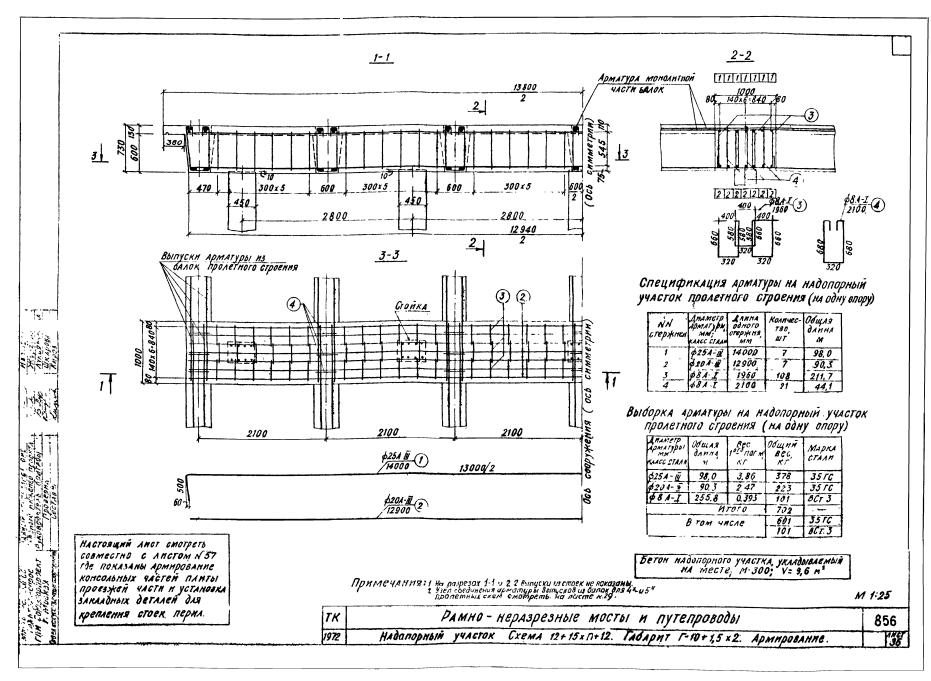

M 1:20

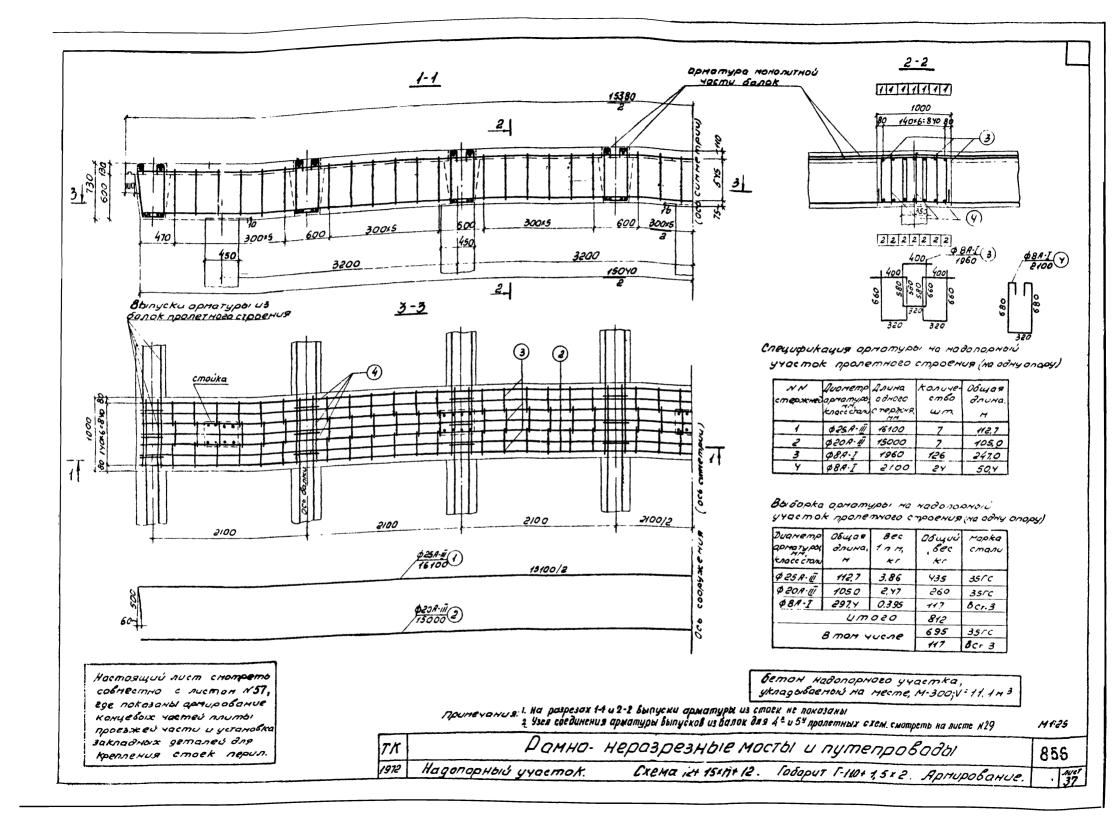

РАМНО - НЕРАЗРЕЗНЫЕ МОСТЫ И ПУТЕПРОВОВЫ BAOK CTENKH BG-7-8 CXEMW 15 + 18 x N + 15 H 12 + 15 x N + 12 APMINDOBAHNE

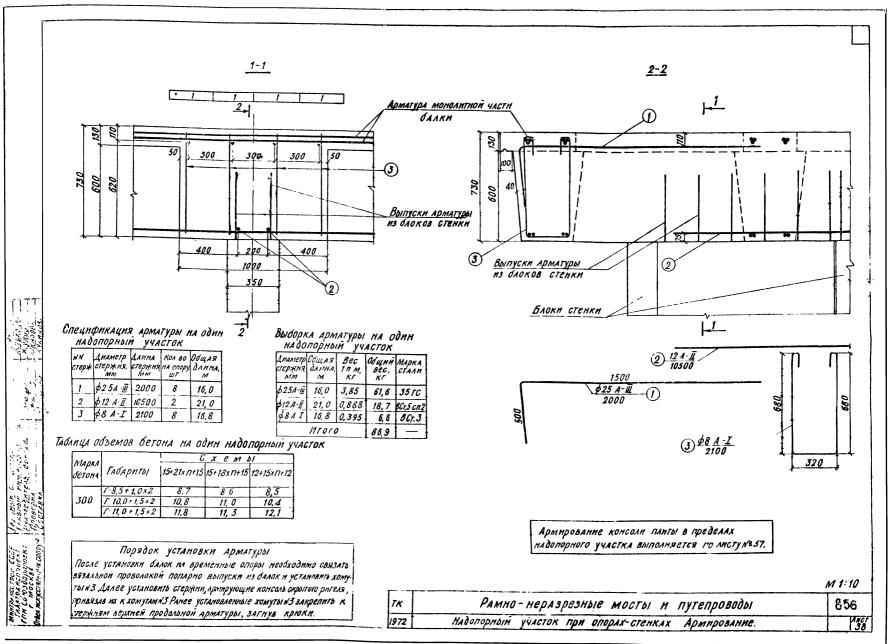


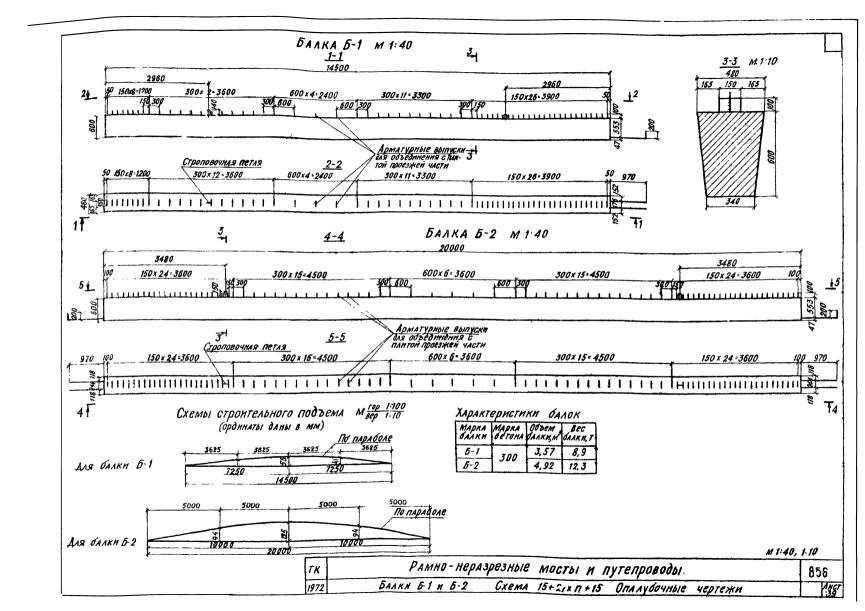


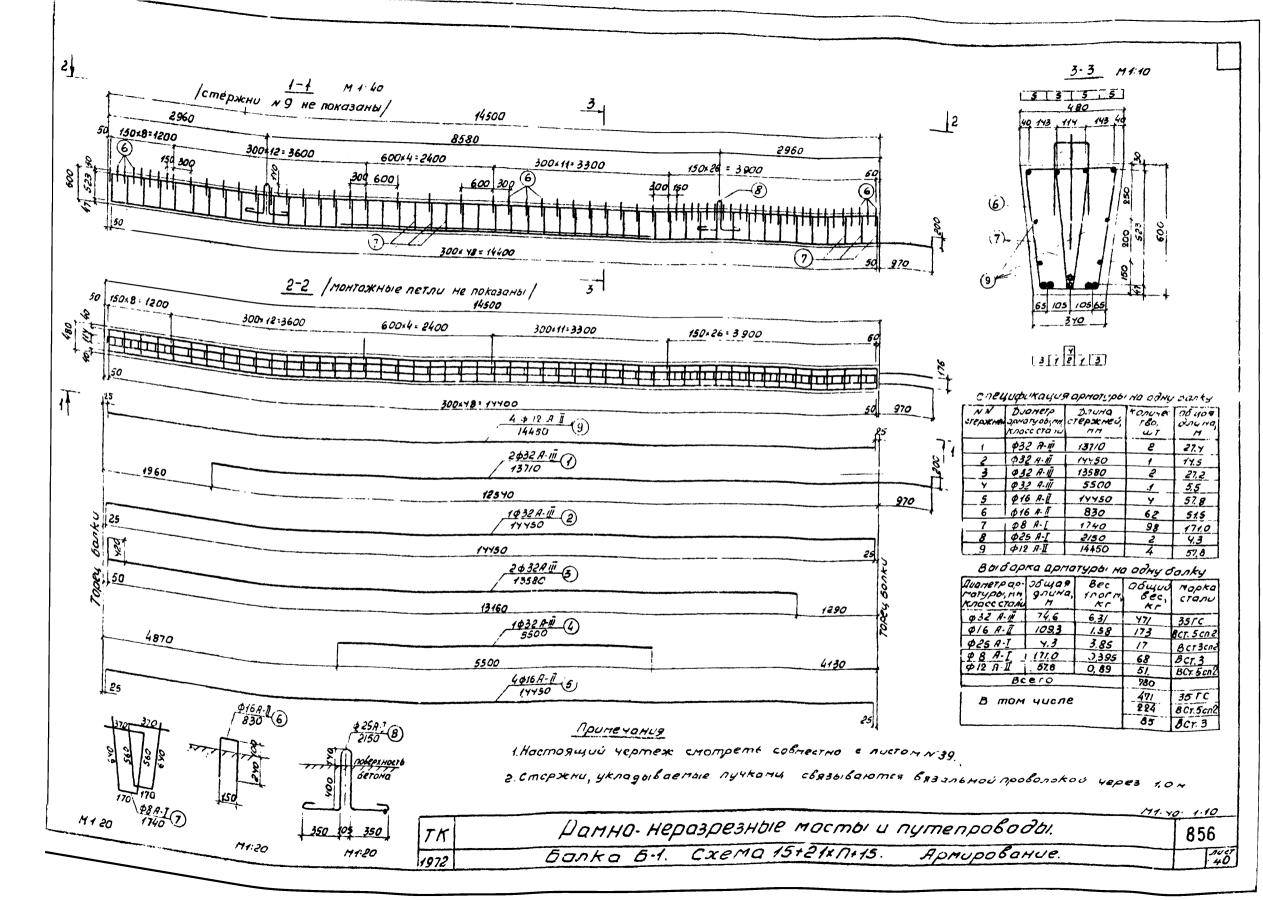


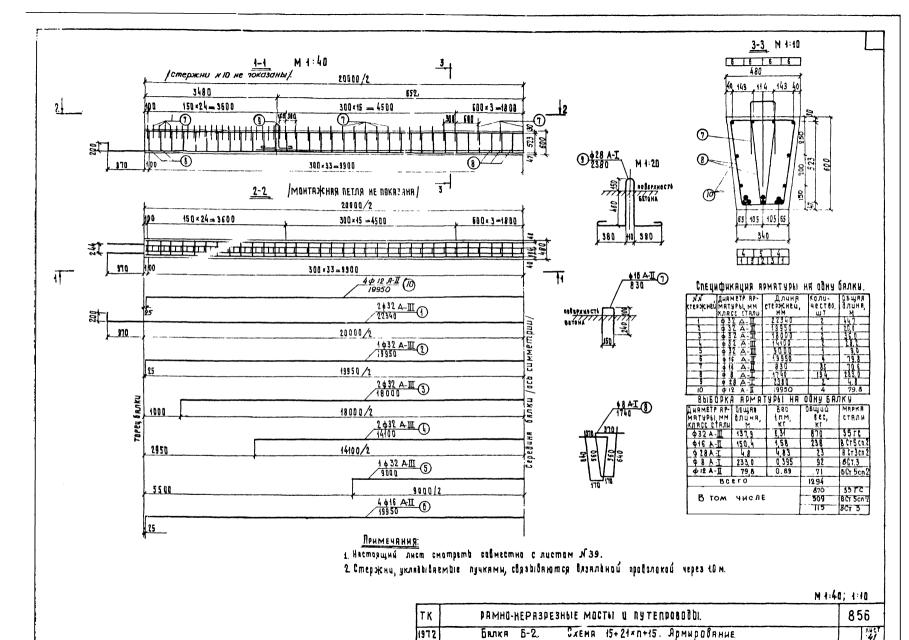


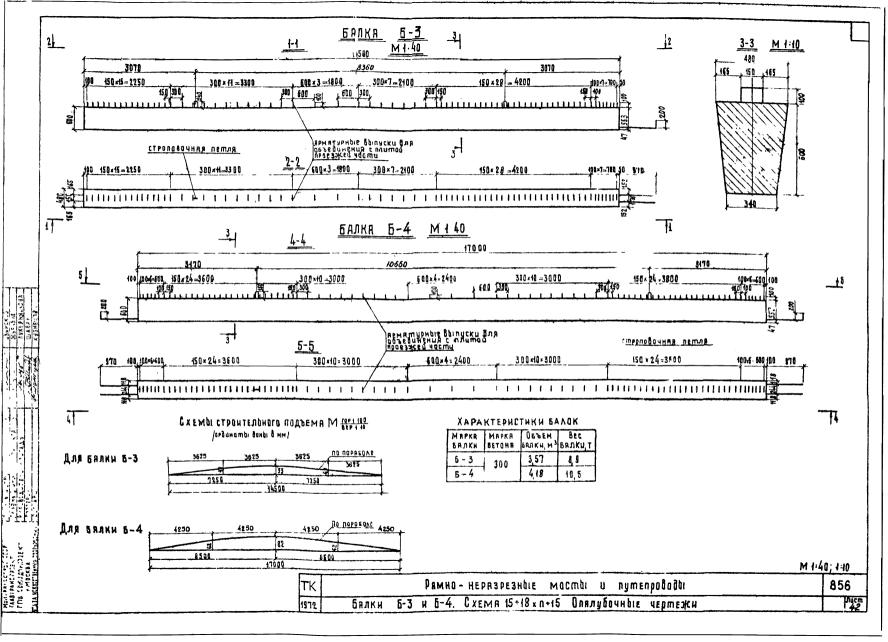


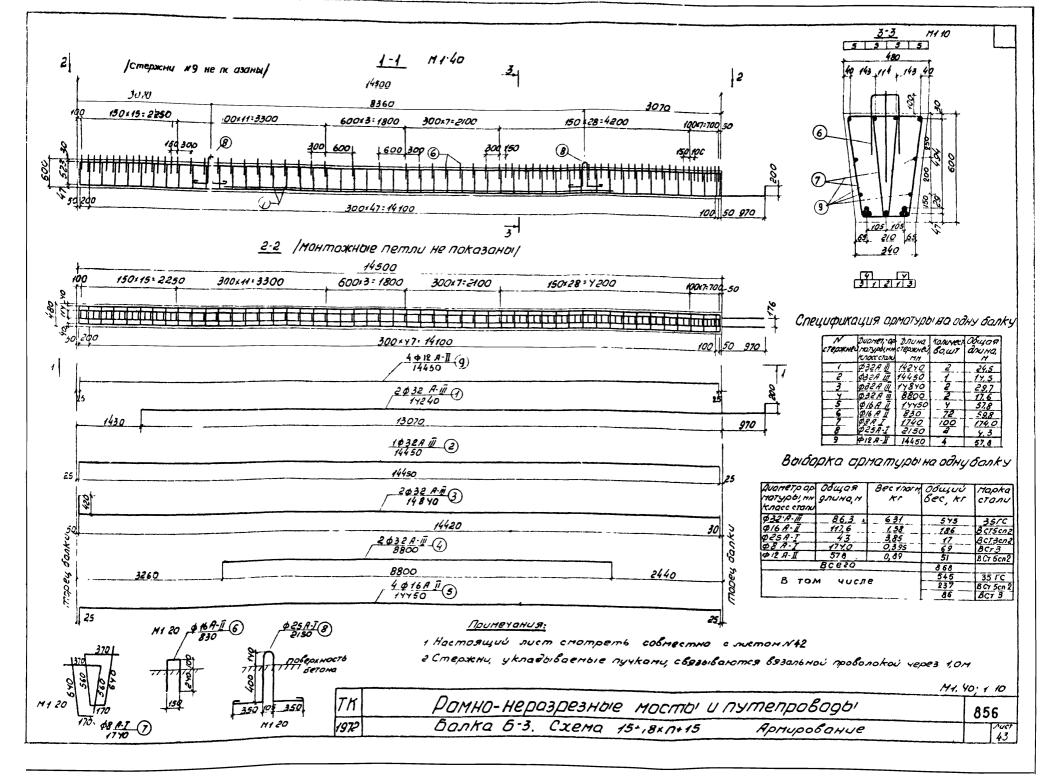


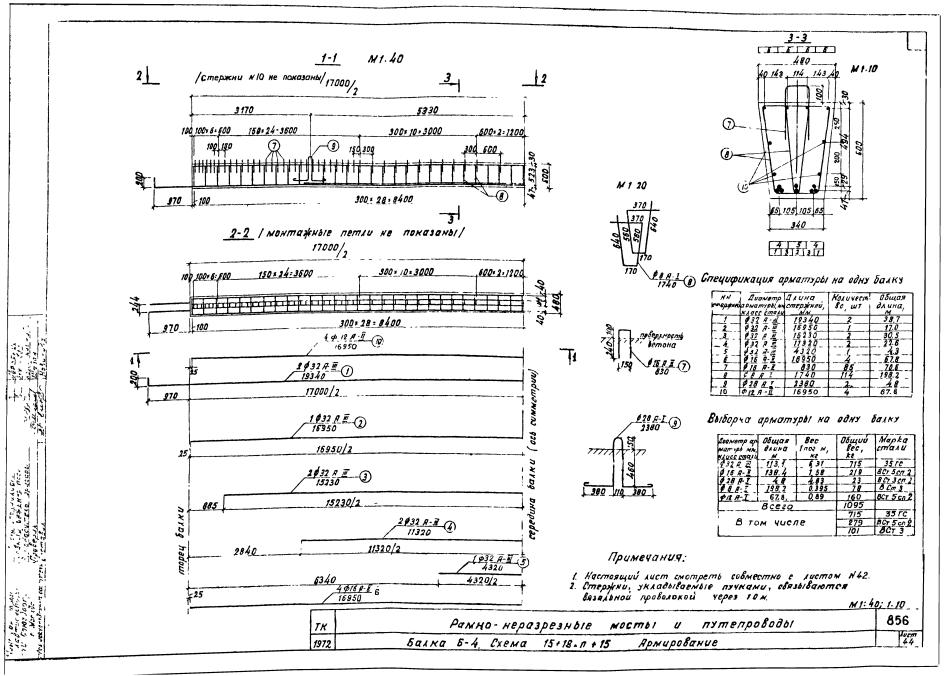


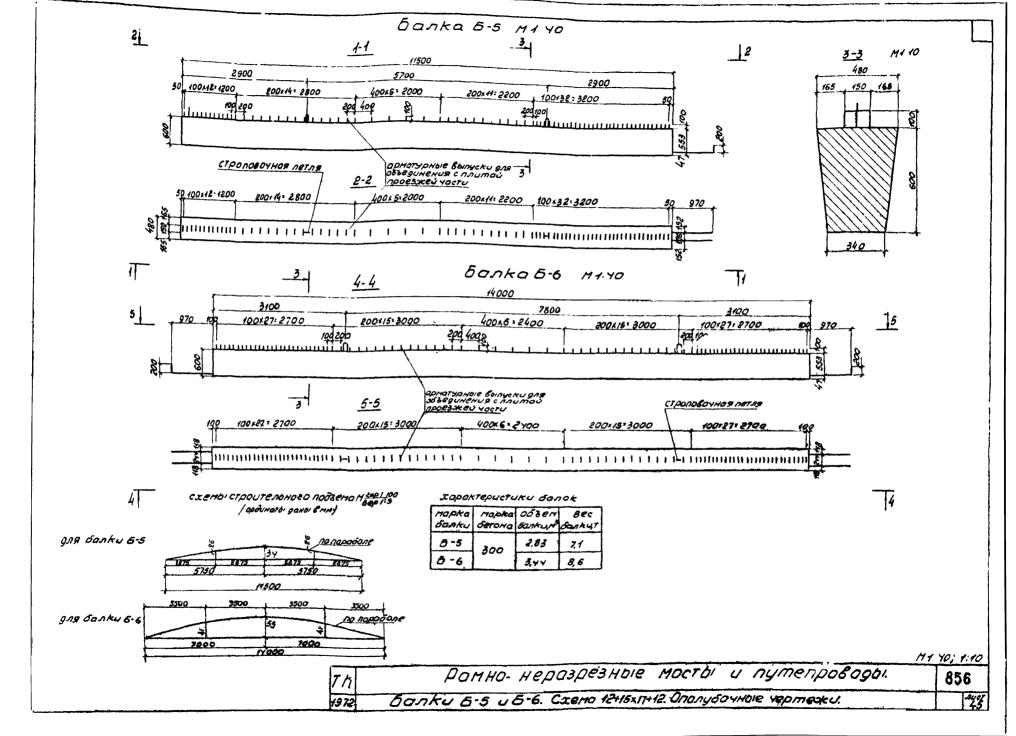


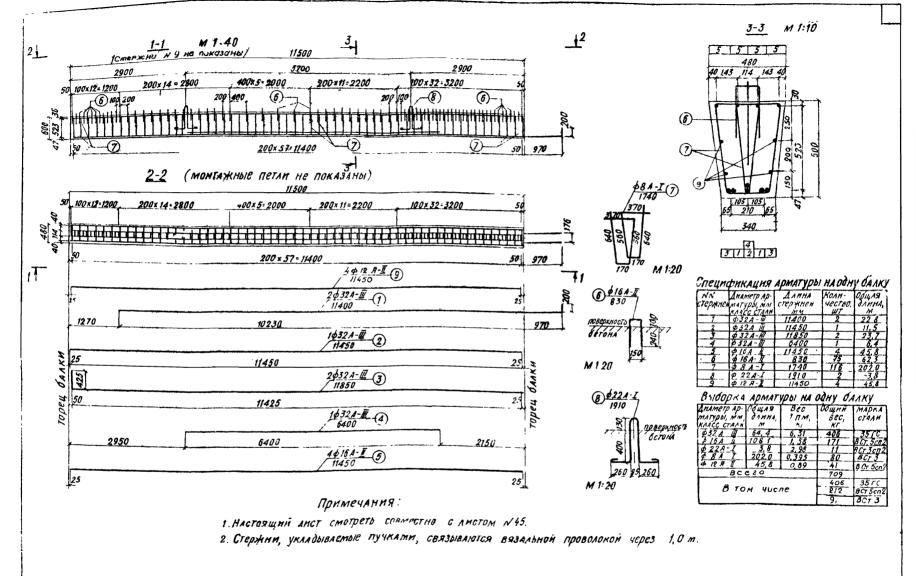


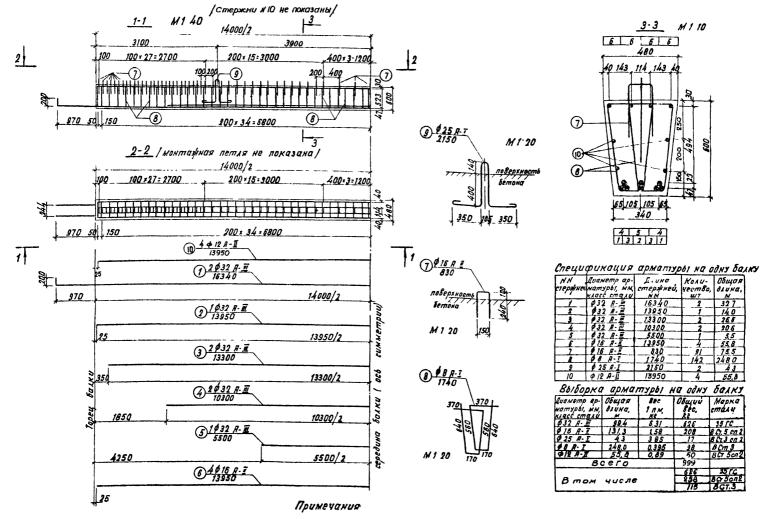


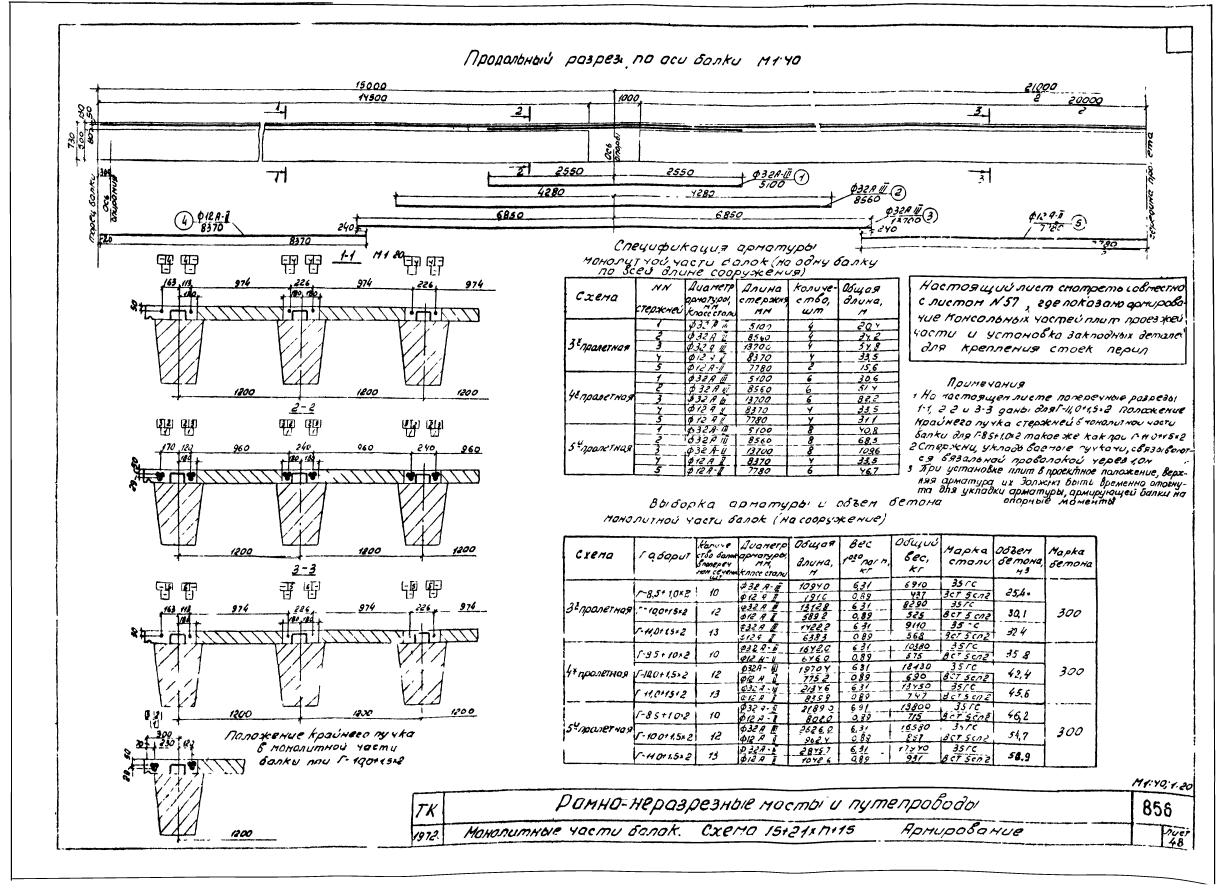


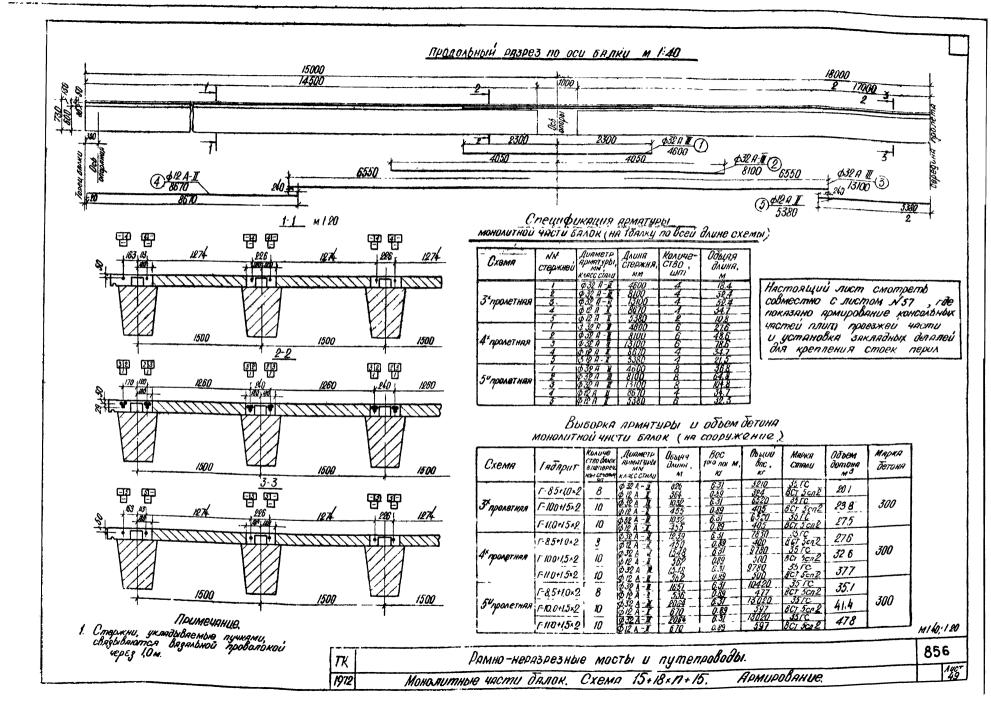


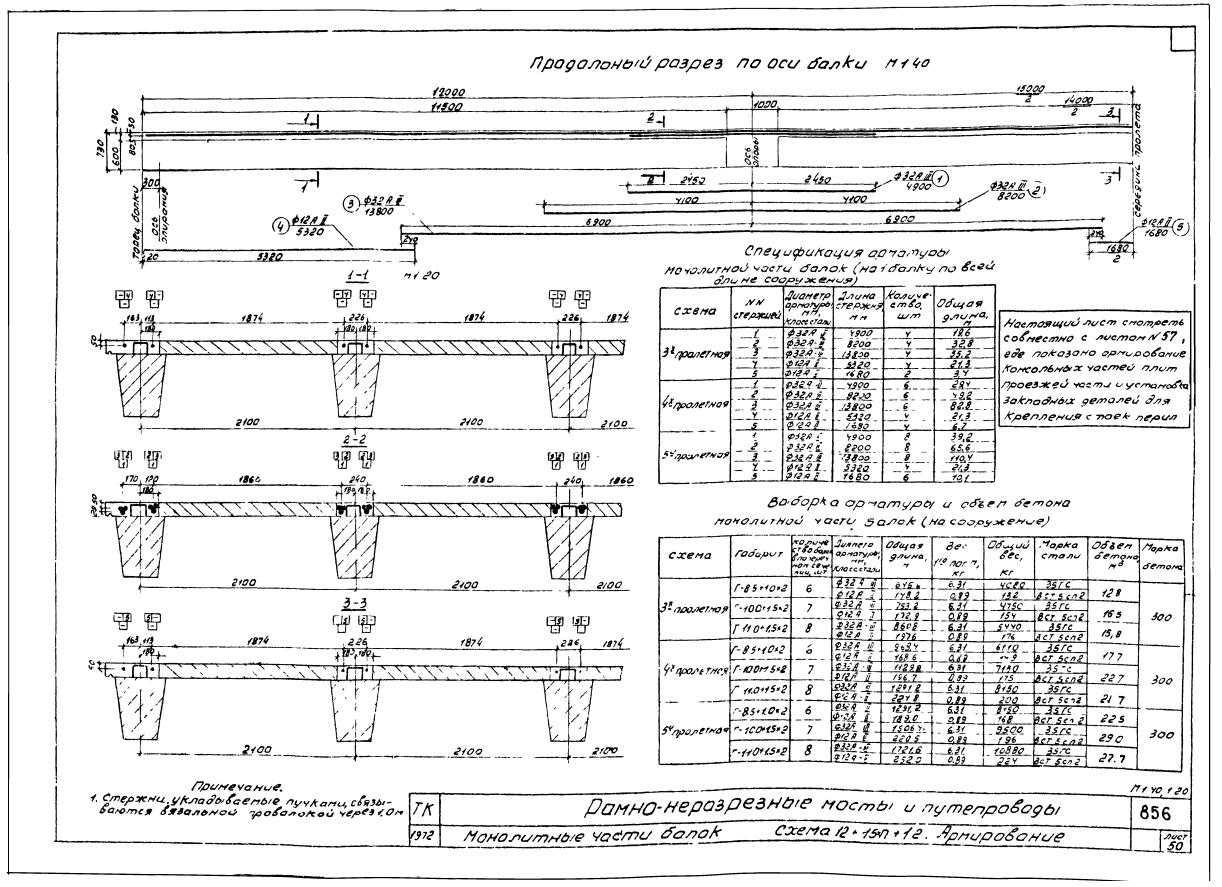


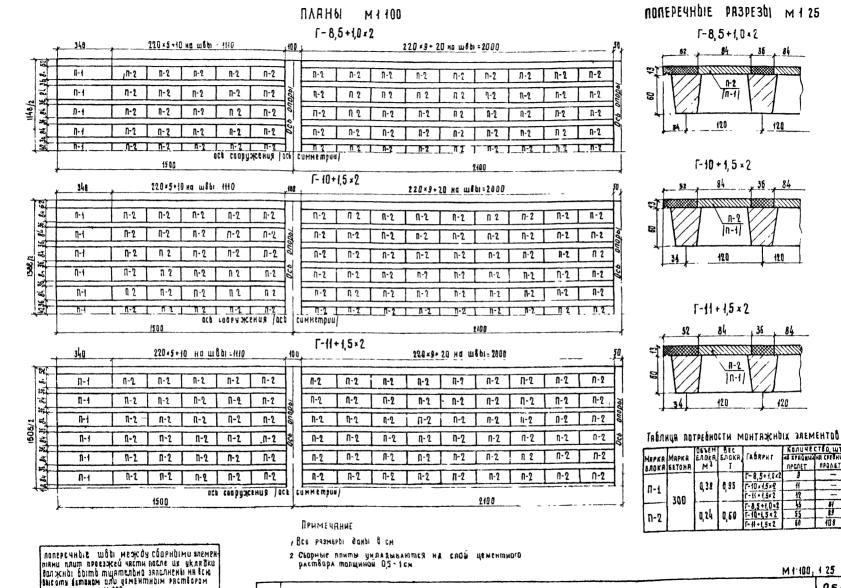





 ТК
 Рамно- неразрезные мосты и путепроводы
 856


 1972
 Балка 5-5 Схема 12+15× П+12 Армирование
 1974




- 1. Настоящий лист смотреть совместно с листом н 45.
- 2. Стеруни, укладываемые пучками, связываются вязальной проволожой через 10 м.

	M F 40;	7:10
TK	Рамно- неразрезные мосты и путеправоды	356
1972	Балка 5-6. Схема 12+15× П+12. Армирование.	149

umpar ússkesogn idmunn sidnood3

ΙK

1972

РЯМНО-НЕРЯЗРЕЗНОТЕ МОСТОТ И ПИТЕПРОВОДОТ

CXBMa 15-21 xn+15

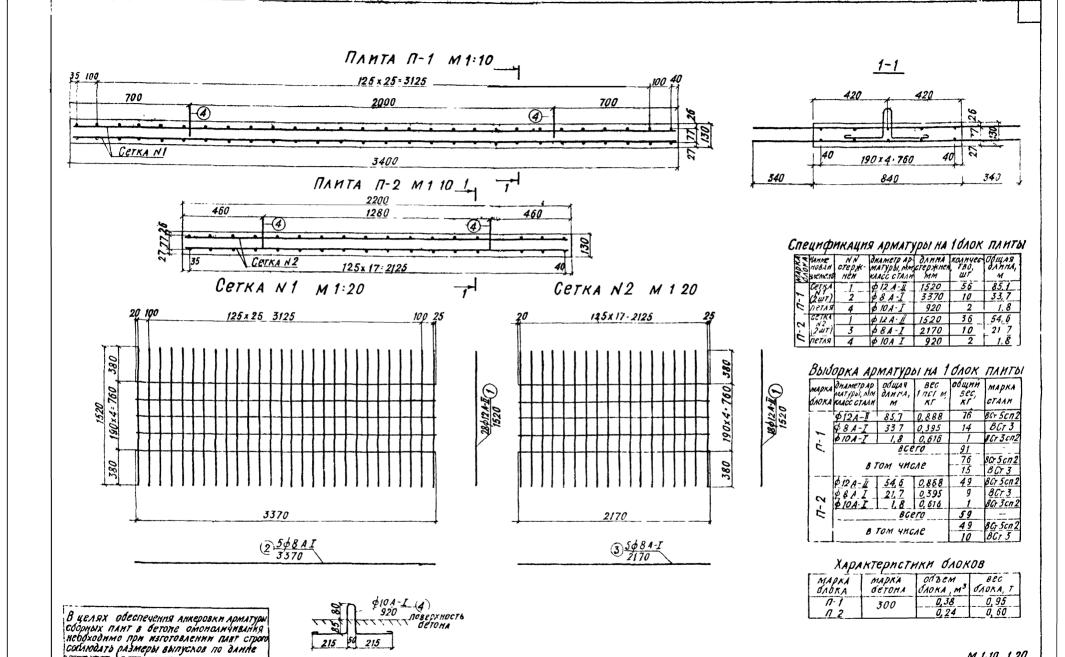
рмэха крижртном

M 1:100, 1 25

Количество, шт

HÁ KPRÚNUMHA CPERHUM

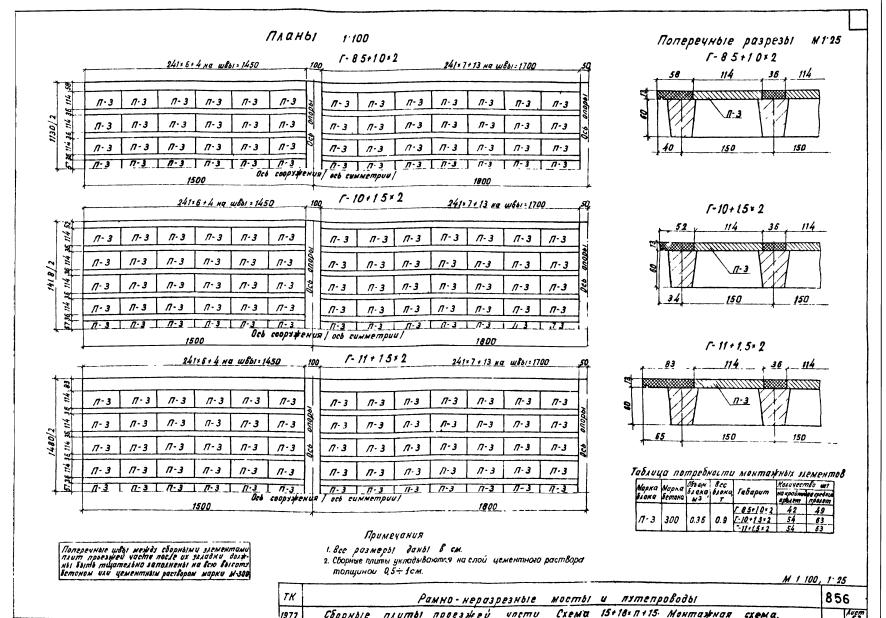
HOLLET MONET


_

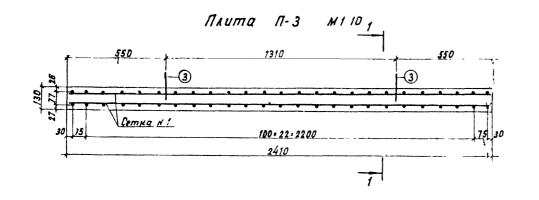
_

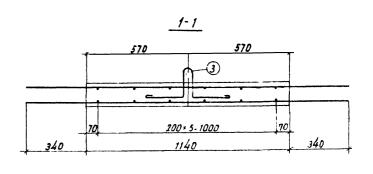
11

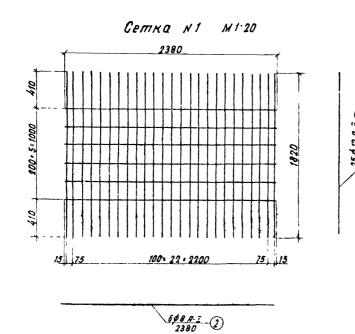
108

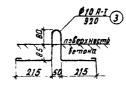

856

М 1-10, 1 20

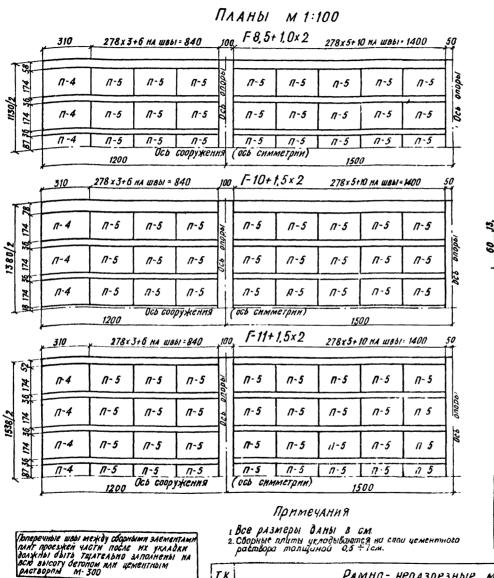

ТК РАМНО-НЕРАЗРЕЗНЫЕ МОСТЫ И ПУТЕПРОВОДЫ 856


1972 Сборные пангы проезжей части марки П-1 и П-2 Схема 15+21×П+15 Армирование м. 3.

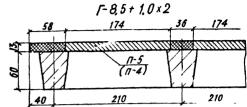


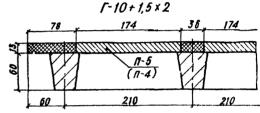

Chopyble niumbi npoesyebu

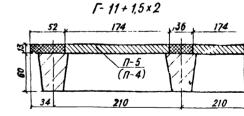
VPCMU


Наиме- нования исчент	мм стержией	Buamétp qu marypál, wm mace etosú	Дхина стеруня,	Kozuve- cmbo, ut	ग्रह्मावः व्यापमवः स
Cerka VI	1	212 A Z	1820	50	91.0
(2 wr)	2	\$8 A-1	2380	. 12	28.5
nemig	3	\$ 10 A-I	920	2	1.8

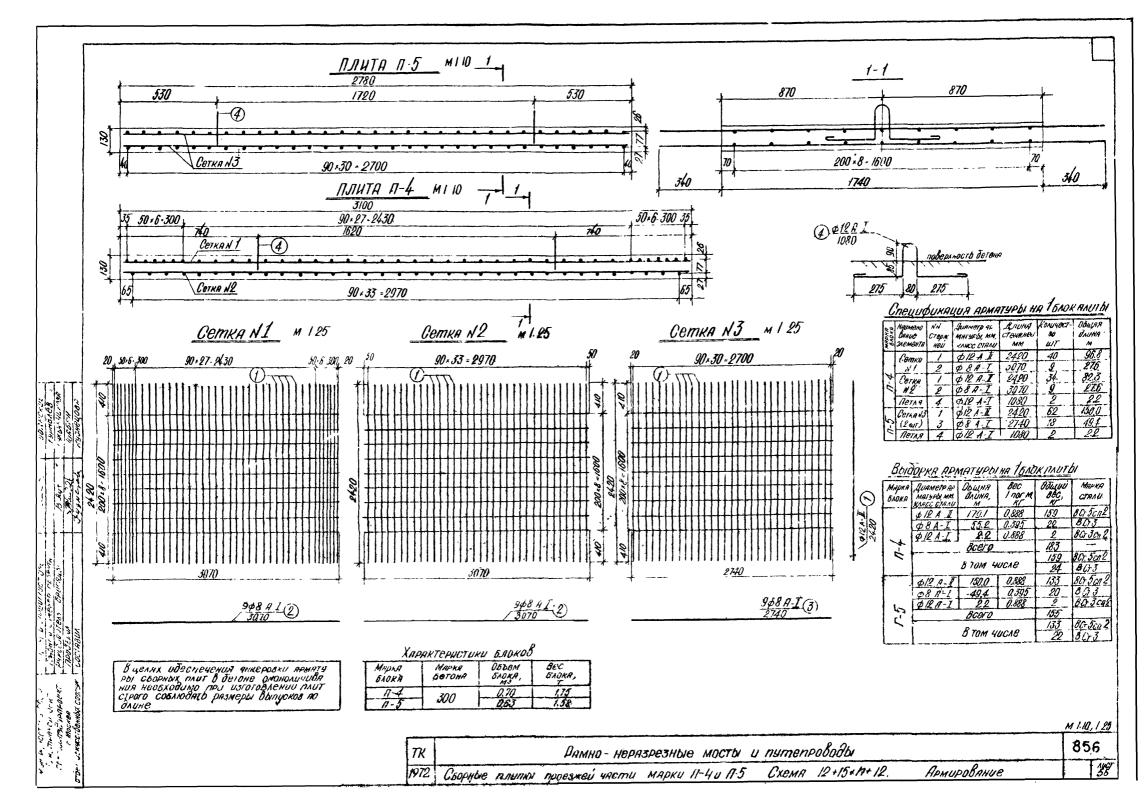
Характеристика блока								
Нарка влока	Марка Ветона	Obdem Bloka, M3	Bec BAOKA,					
17-3	300	0.36	0,9					

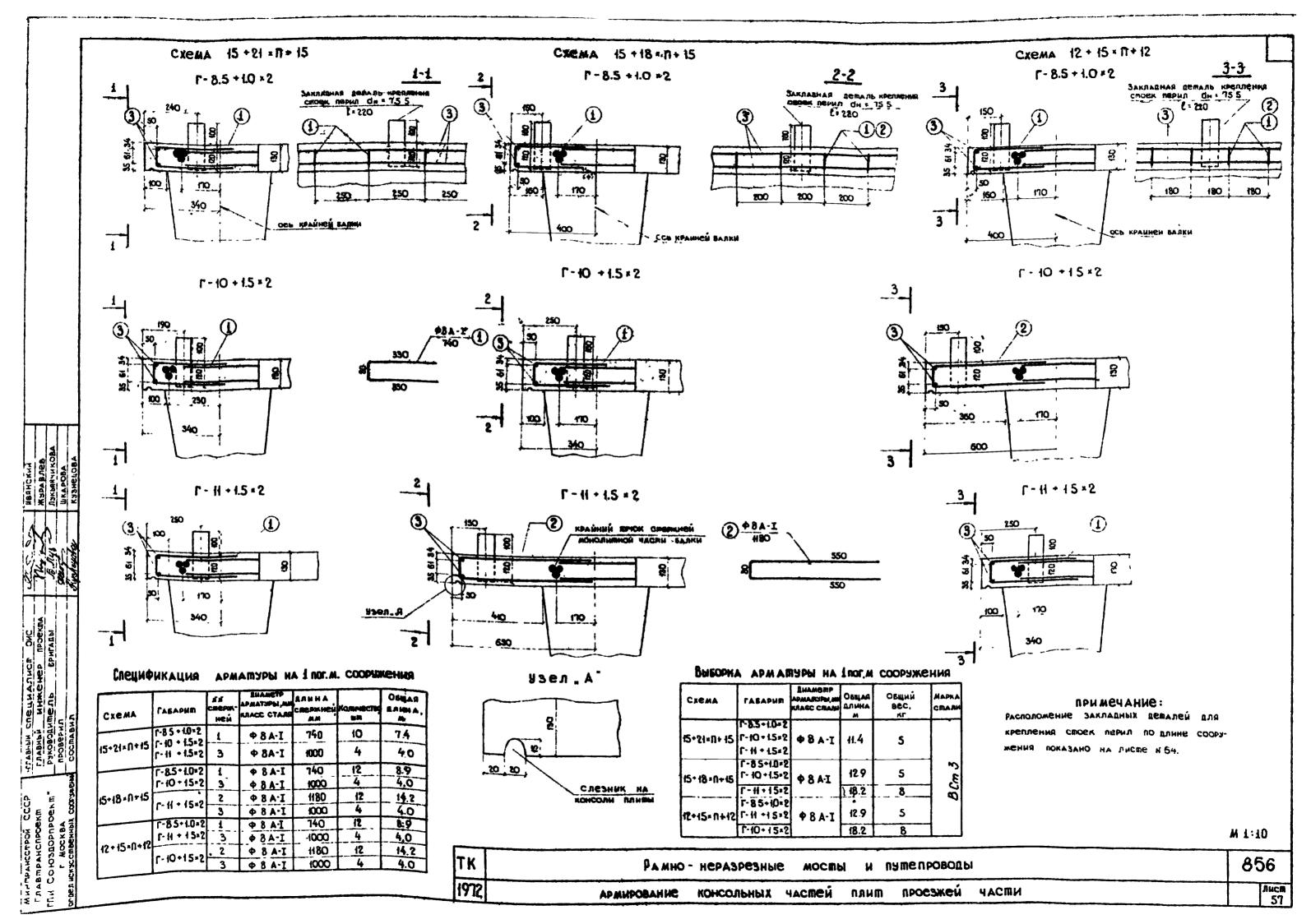

В целях обеспечения анкеровки арматуры сборных плит в ветоне ононозичивания необлодимо пои изготовлении плит стоого соблюдать размеры выпусков по длиге,

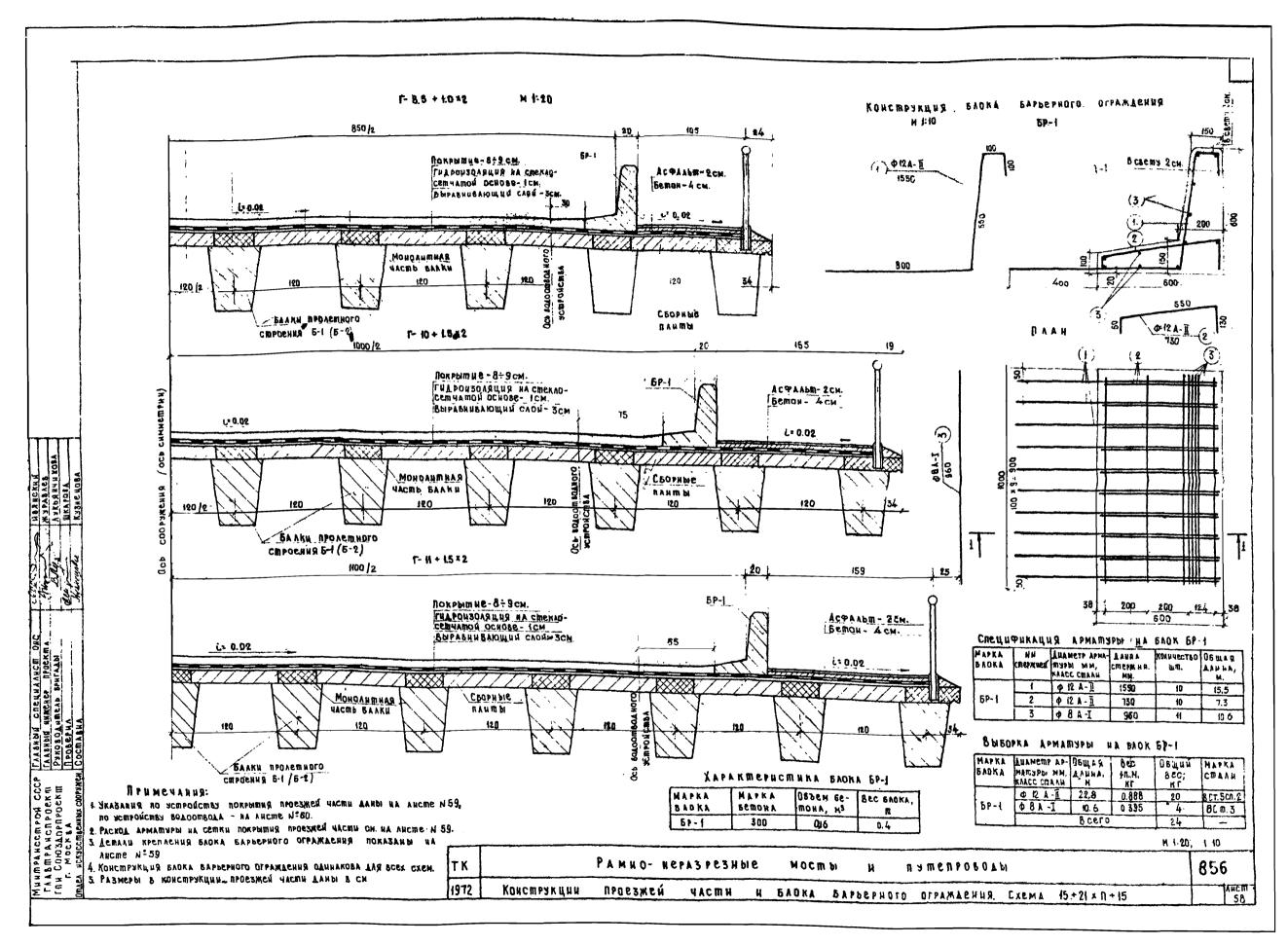

8016	δορκα αρ	матуры	Halb	HOM MA	(UMb/
Mapka Sibka	Luametp ap Matspbl, mm, Klacc ctslu	Общая длина, м	Bec 1 noë. m, Kë	Obujui Ber Obujui	Mapka emaxu
	012 A E	91.0	0.888	81	8 CT 5 CT 2
	09 A. T	28.5	0.395	17	BCm 3
m	\$ 10 A- I	18	0.616	1	857,3 cm 2
. 4		Beelo	93	(
	8 MOM YUCAR			8/	8C7 5 GA 2
				12	BCm 3

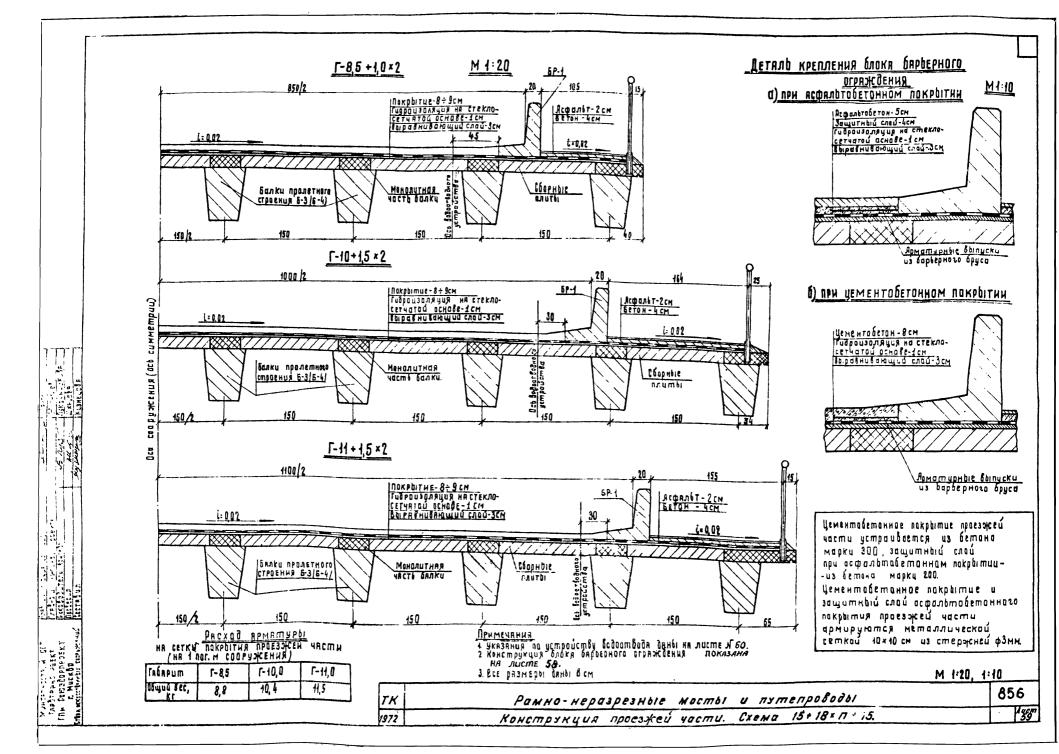

		M1	:10; 1:20
1	TΚ	Рамна- неразрезные мосты и путепроводы	856
	1972	Сборная плита проезжей части марки П-3 Схема 15+18×П+15. Армирование.	54

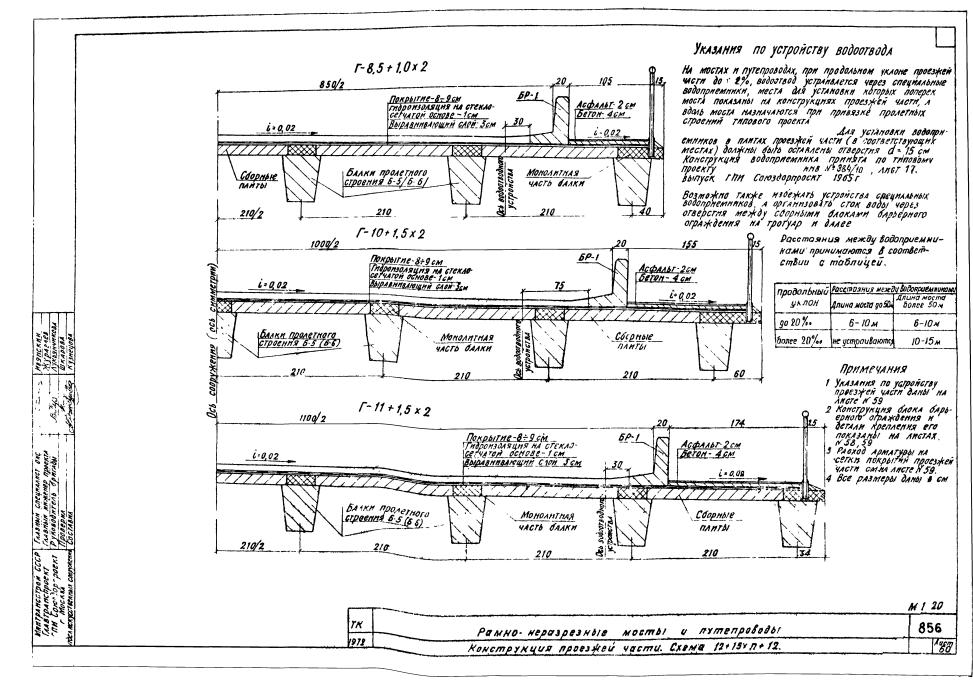
Поперечные разрезы м 1:25

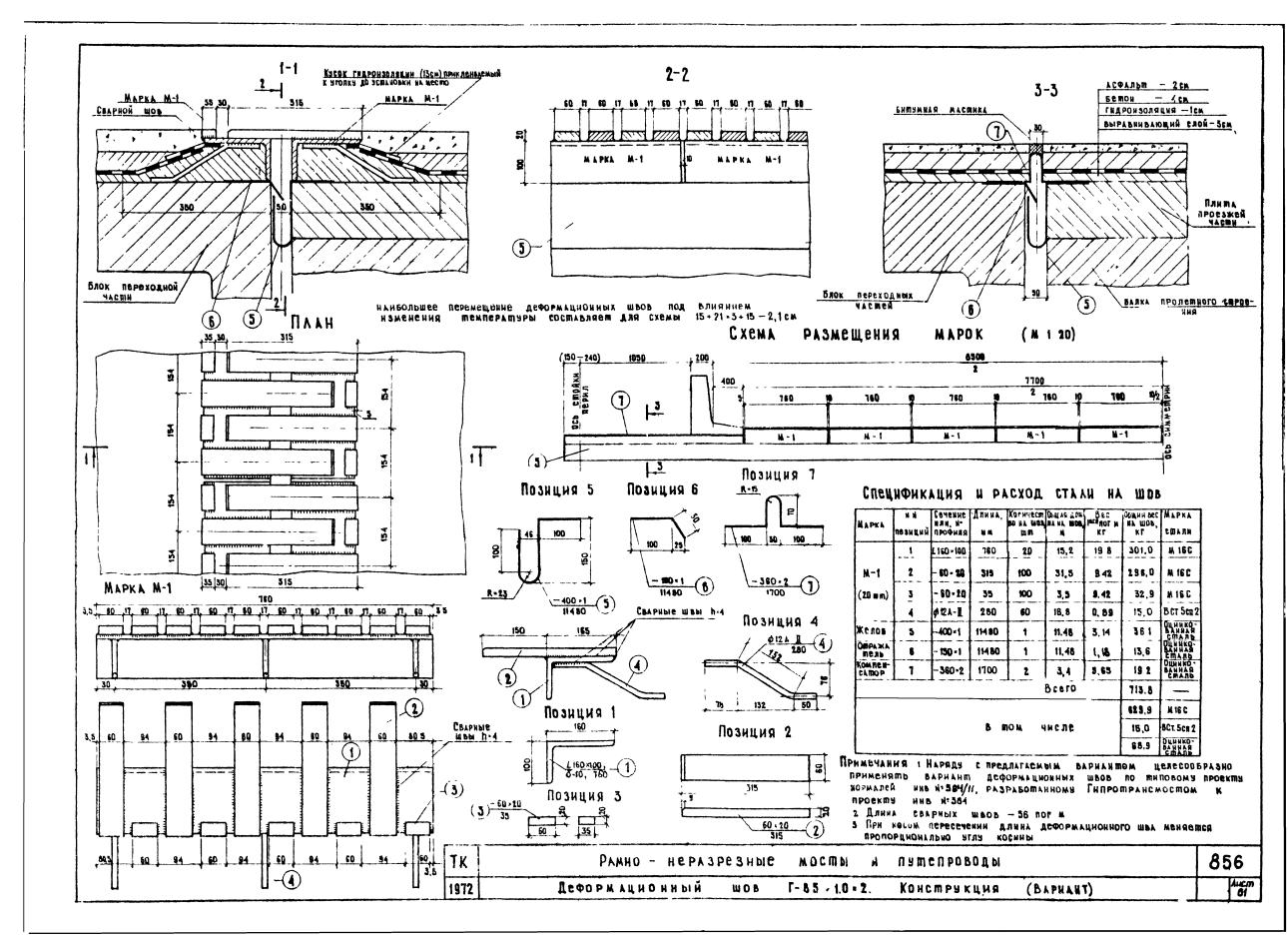


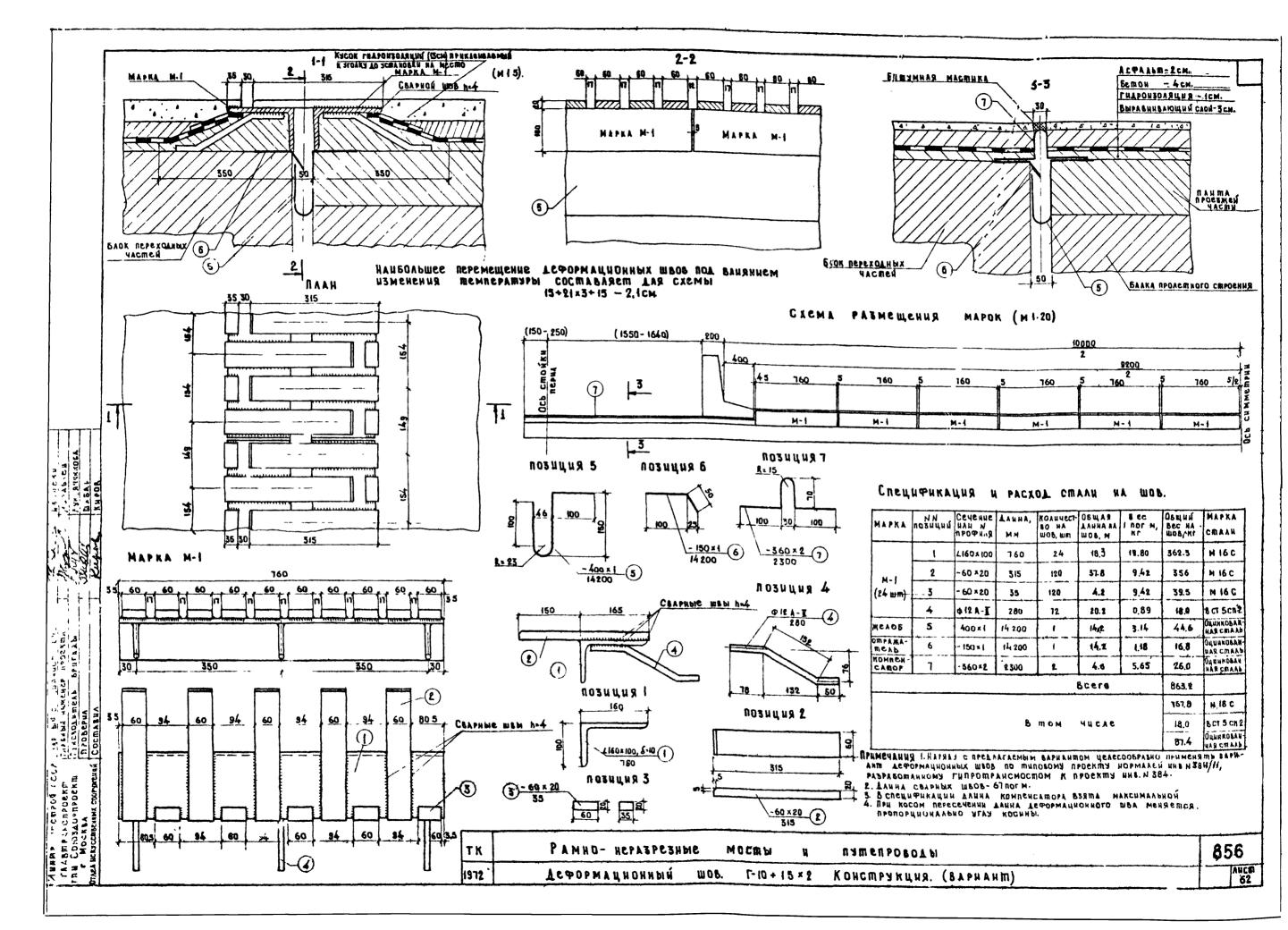

TAGA	пЦА	MOTPEO	HOGTH	MOHTAX	KHBIX DA	ементов
MADKA	MADKA OETOHA	Объем фока М 3	BEC CLOKA,	TABAPHT	KONN YECT B	O. WT
<i>1</i> 7-4	300	0,7	1, 75	V-85+1012 V-10+1,5x2	<u>5</u>	_=

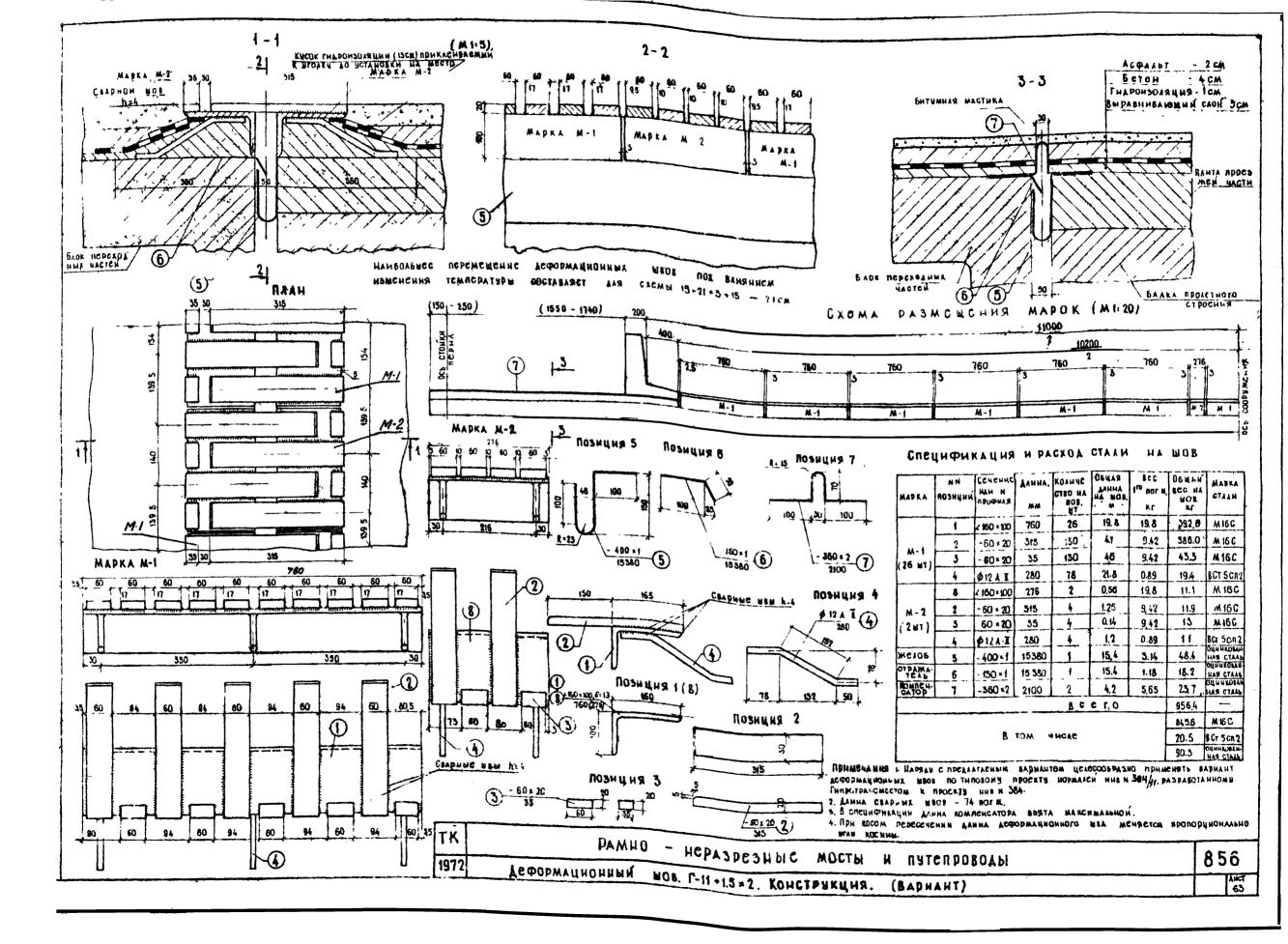

		710.7	.,	1.10111213	17,077	5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MAPKA	MADKA	DOBEM GLOKA	BEG CHOKA	TADAPHT	KONHYECTB	O. WT
ONOKA	GETOHA	M3	<u>r</u>		W MOUNTH TOUSE	уи средини пром
	1			V-85+1012	. 5	-
<i>11-4</i>		0,7	1.75	V-10+1,5x2	6	
	300		l	F-11+1,5 x 2	7	
n·5	1000	1	l	1-8,5+1,0x2	15	25
	1	0,63	1,58	V-10+1,5x2	18	30
	ł	L	1	V-11+ 15×2	21	35

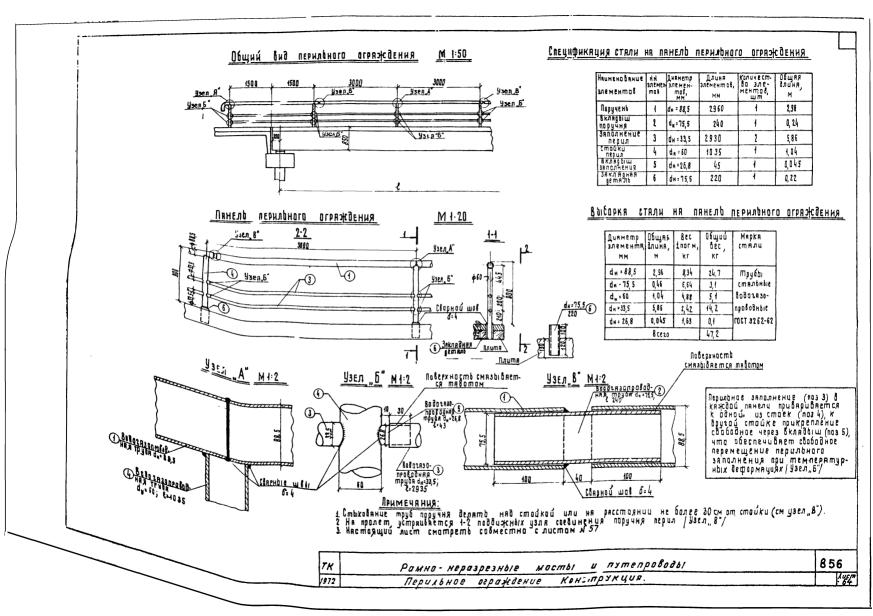

M 1 100, 1:25 856

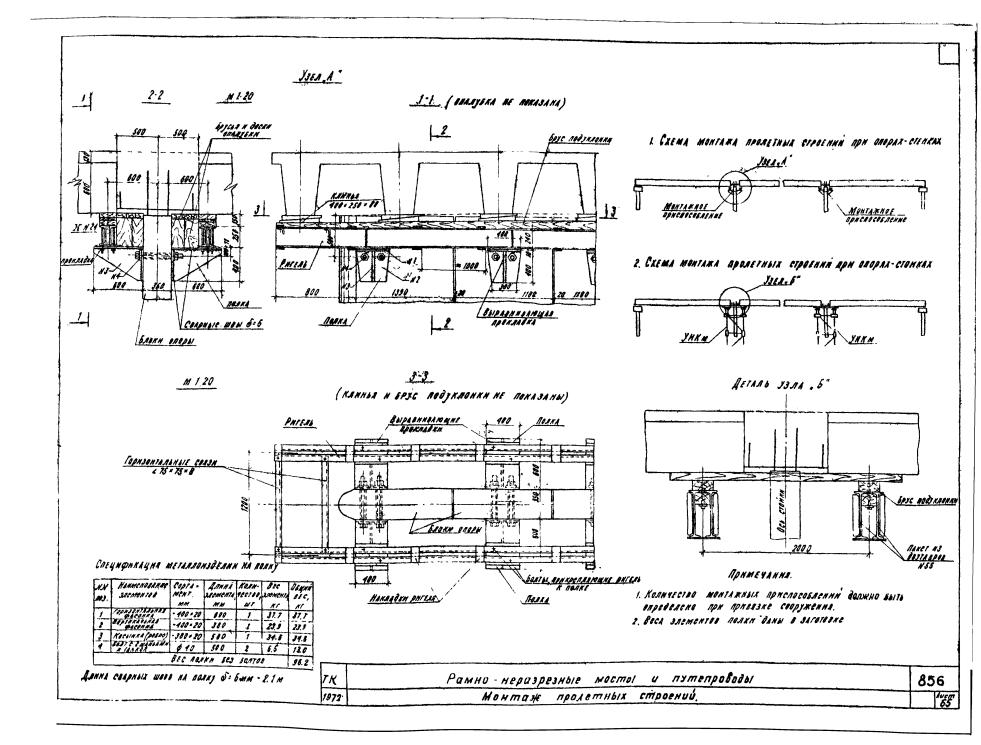

Рамно- неразрезные мосты и путепроводы TK COOPHUE MANTH MODESKEN YACTH. CXEMA 12+15×N+12 MONTAKHAN CXEMA 1972

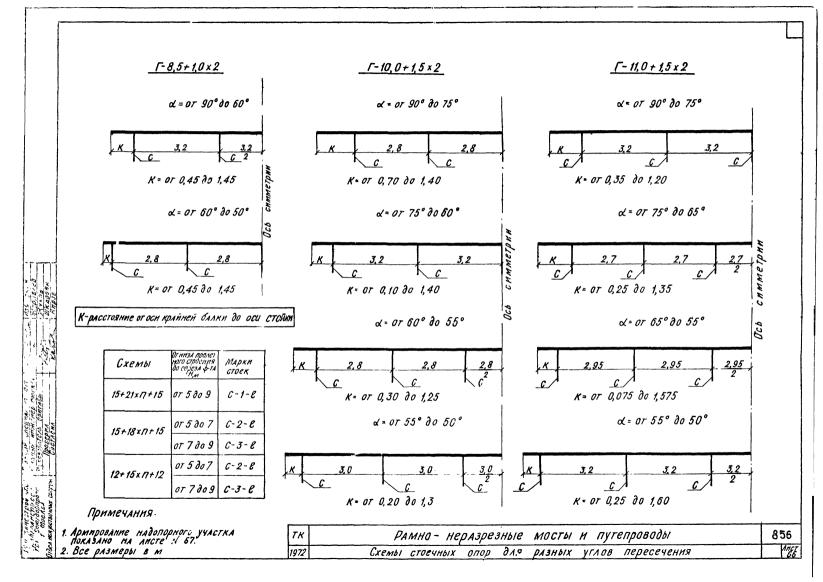


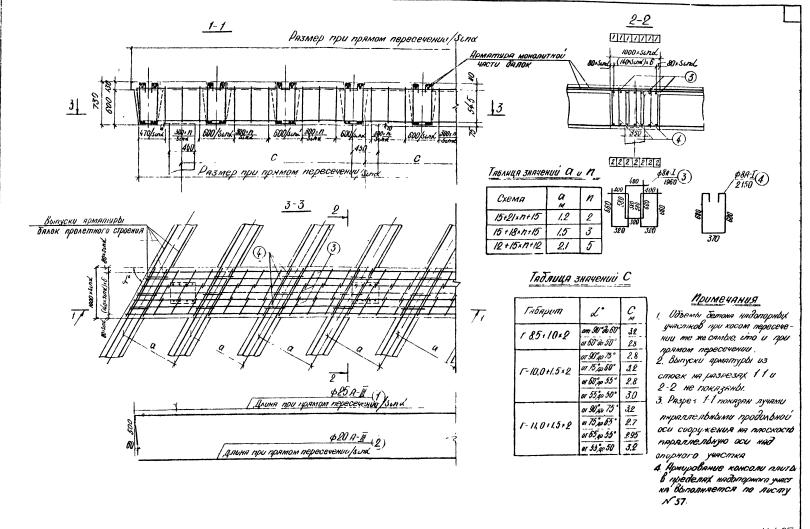


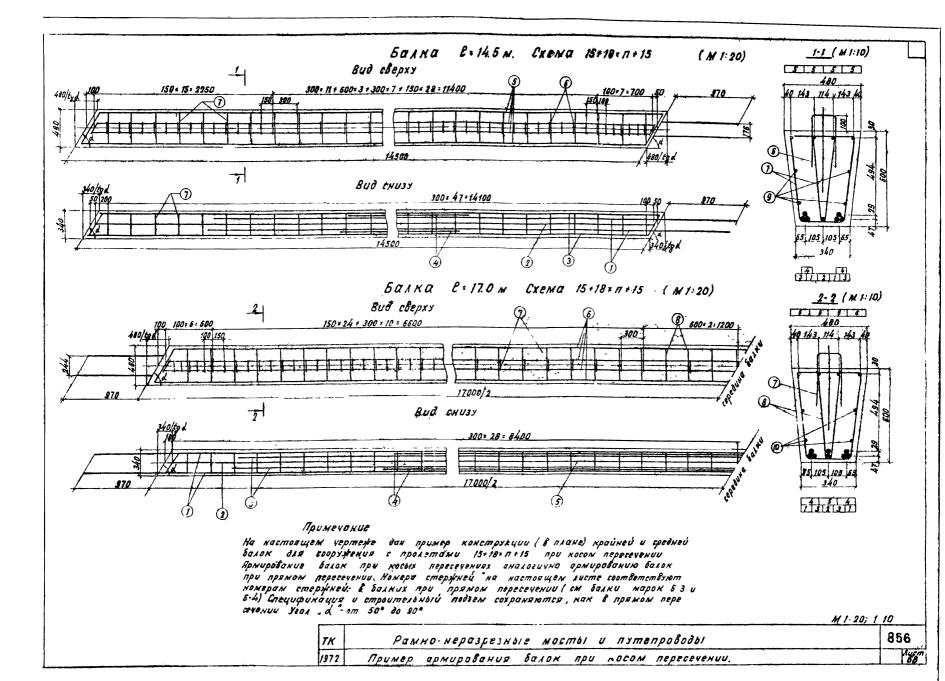


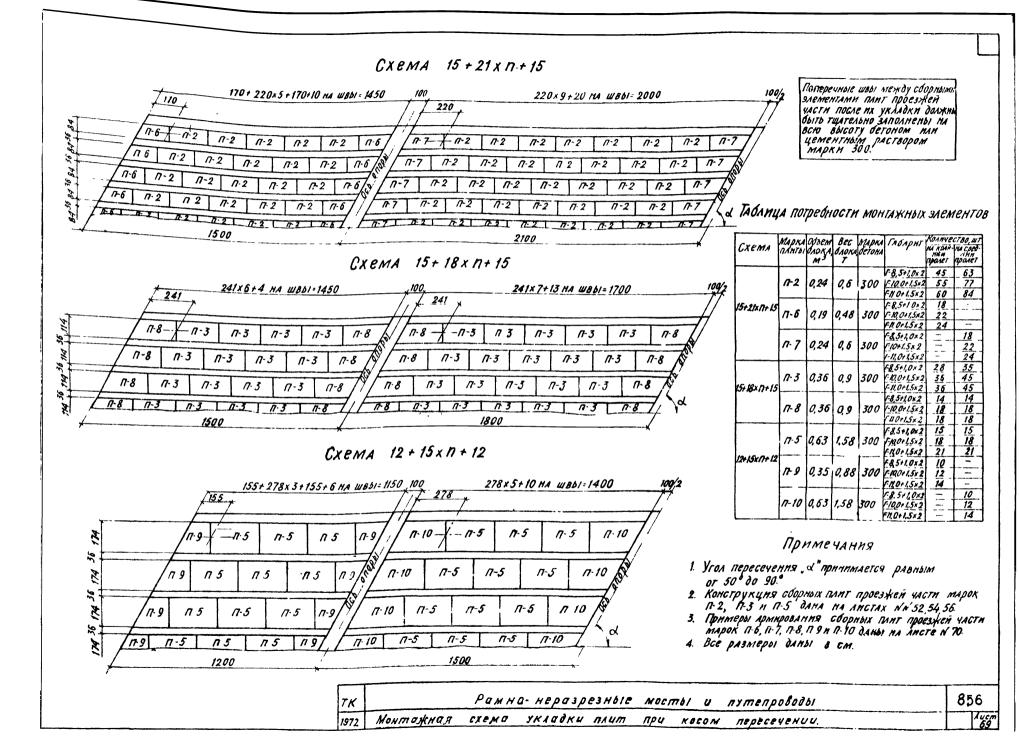


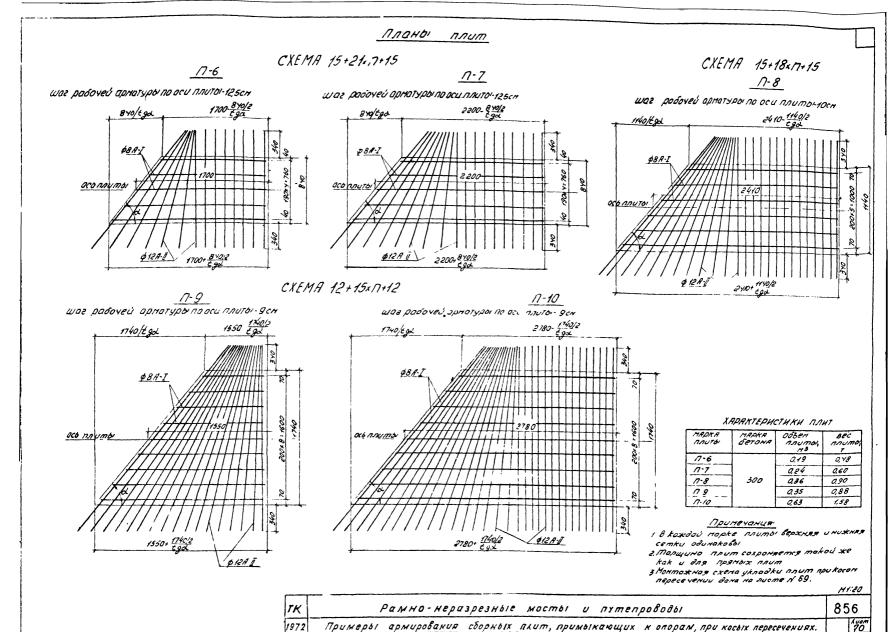






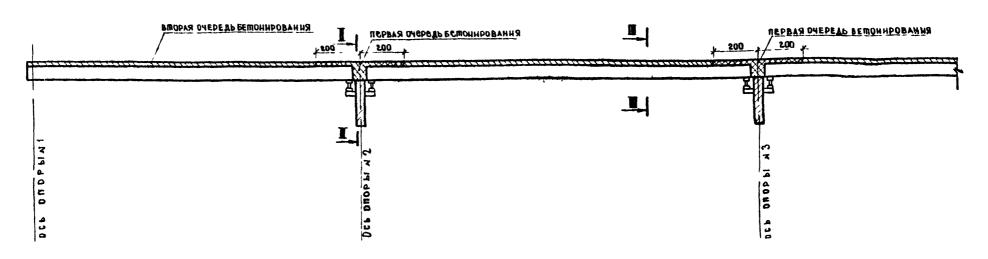

M 125 856

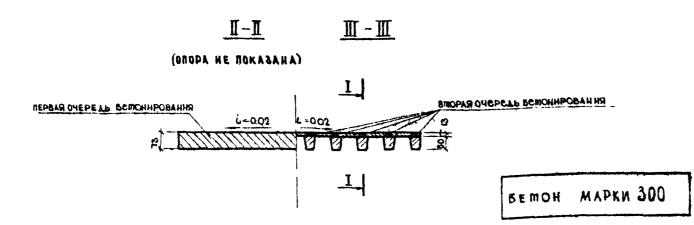

14º11 67


1972 Надопорный участок при косом пересечении Армирование.

PAMHO - HEPASPESHOLE MOCTH U NYTENPOBOAH

TK




Схема ветонирования пролетного строения

MACHTAS 1: 100

I-I

ПОПЕРЕЧНЫЕ РАЗРЕЗЫ

ПОРЯДОК БЕМОНИРОВАНИЯ

Перед началом ветонирования должна выть истановлена арматира надопорной части пролетного строения и произведена подготовка ветонной поверхности торцов валок пропетного строения согласно всн 98-64 гори и произвеждения водственным комитетом по транспортному строительству СССР. В перезю очередь производится ветонирование надопорной части пропетного строения на полнию высоли тори тори тори ветонирования производится после достижения ветоном первой очереди воу прочности.

Вторию очередь вотонирования производить в обе стомения ветоном первой очереди воу прочности.

RUHAPAMUR

1. BCC PASMEPH & CM.

TK	рамио-неразрезные мосты и путепроводы	856
1972	Схема БЕ ТОН Н В ОТОЛЕТНОГО СТРОЕН НЯ	hyer)